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ABSTRACT

The purpose of this report is to document research to develop stra-

tegies for concurrent processing of complex algorithms in data driven archi-

tectures. The problem domain consists of decision-free algorithms having

large-grained, computationally complex primitive operations. Such are often

found in signal processing and control applications. The anticipated multi-

processor environment is a data flow architecture containing between two and

twenty computing elements. Each computing element is a processor having

local program memory, and which communicates with a common global data mem-

ory. A new graph theoretic model called ATAMM which establishes rules for

relating a decomposed algorithm to its execution in a data flow architecture

is presented. The ATAMM model is used to determine strategies to achieve

optimum time performance and to develop a system diagnostic software tool.

In addition, preliminary work on a new multiprocessor operating system based

on the ATAMM specifications is described.
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1.0 INI_IODgOTIOW

The purpose of this report is to document research to develop strate-

gies for concurrent processing of complex algorithms in data driven archi-

tectures. The problem domain consists of decision-free algorithms having

large-gr_ined, computationally complex primitive operations. The antici-

pated multiprocessor environment is assumed to contain between two and

twenty computing elements for concurrent execution of the various primitive

operations. Each computing element or functional unit is a processor having

local memory for program storage and temporary input and output data con-

tainers. The functional units have a common global data memory, and func-

tional unit activity is coordinated by a graph manager. The global memory

and graph manager may be either centralized or distributed. The authors

have proposed a new graph theoretic model to provide a basis for establish-

ing rules for relating a decomposed algorithm to its execution in"a data

flow environment. The model is identified by the acronym ATAMM which repre-

sents A__igorithm T_o Architecture Mapping Model. The availability of the

ATAMM model ils important because it provides a context in which to investi-

gate algorithm decomposition strategies, it provides a basis for predicting

and improving time performance, and it identifies the data flow and control

flow required of any data flow architecture which implements the algorithm.

During an earlier grant period, May 16, 1986 to May 15, 1987, the au-

thors formulated the ATAMM model for representing the implementation of a

decomposed algorithm in a data flow architecture. In addition, a simulation

tool was developed to display data flow and control flow for algorithms

operating according to the ATAMM rules. During the present grant period,

May 16, 1987 to May 15, 1988, the ATAMM model was used to determine analyti-

cally performance bounds for task computational time and system throughput



time. An operating strategy which achieves optimum time performance was

developed. In addition, a newdiagnostic software tool was developed for

use with the simulation tool. The diagnostic tool monitors detailed system

operation and displays global system performance indicators and measures.

Also, a new multiprocessor operating system based on the ATAMMspecifica-

tions is being constructed to validate the ATAMMrules and to provide a

testbed for further experimentation. It is the purpose of this report to a

detailed description of the research performed during the present grant

period.

In Section II, a overview of research performed during the period May

16, 1987 to May 15, 1988 is presented. This overview consists of summaries

of work to develop strategies for optimum time performance, diagnostic soft-

ware tools, and a testbed operating system. In Section III, the development

of strategies for optimum time performance is described. The new diaganos-

tic software tools are explained and illustrated in Section IV. Recommenda-

tions for continuing and future research are briefly outlined in Section V.

Twopapers describing recent research efforts are included as

appendices.



II. RBSIUULCIIOVBIVII_W

In this section, a summary of research activity conducted during the

period May 16, 1987 through May 15, 1988 is presented. A more detailed

description of this work, as well as illustrative examples, is given in the

following sections and the appendices.

II.i Modeling and Performance

The development of a new graph theoretic model for describing data and

control flow associated with the execution of large-grained algorithms in a

special distributed computing environment is presented. The model is iden-

tified by the acronym ATAMM which represents Algorithm To Architecture

Mapping Model. The purpose of such a model is to provide a basis for

establishing rules for relating an algorithm to its execution in a multi-

processor environment. Specifications derived from the model lead directly

to the description of a data flow architecture. The availability of the

ATAMM model is important for at least three reasons. First, it provides a

context in which to investigate algorithm decomposition strategies without

the need to specify a specific computer architecture. Second, the model

identifies the data flow and control dialog required of any data flow archi-

tecture which implements the algorithm. Third, the model provides a basis

for calculating analytically performance bounds for computing speed and

throughout capacity.

The problem domain of the ATAMM model consists of decision free algo-

rithms with computationally complex primitive operations which are assumed

to be implemented in a dedicated data flow environment. The algorithms are

such as may be found in (but not limited to) large scale signal processing

and control applications. The anticipated multiprocessor environment is



assumedto consiste of two to twenty processing elements for concurrent

execution of the various algorithm primitives.

The development of new computer architectures based upon distributed,

multiprocessor organizations [I], [2] is motivated mainly by the requirement

for increased speed and greater throughput capability in complex signal

processing applications [3]. Recent advances in the production of high-

density microelectronics [4] has madepossible the construction of parallel

architectures consisting of identical, special purpose computing elements

[5]. A numberof models for describing the behavior of algorithms in this

setting have been developed [6] - [8]. However, these models represent only

the data flow and do not adequately display the complex issues of communi-

cation and control flow which must occur in any realization of the model.

For this reason, it has been difficult to investigate how to effectively

match the decomposition and scheduling of algorithms to the structure and

control of parallel architectures. The importance of better understanding

the relationship between algorithms and architectures is only now becoming

recognized [9].

A newmodel useful for understanding the relationship between decom-

posed algorithms and data flow architectures has been presented. Named

ATAMMfor Algorithm To Architecture Mapping Model, the model consists of

Petri net marked graphs called the algorithm marked graph, the node marked

graph, and the computational marked graph. After establishing that the

computational marked graph is live, safe and consistent, graph time perform-

ance measures of time between input and output (TBIO), task time (TT), and

time between outputs (TBO) are defined. Then lower bounds for the

performance measures are calculated analytically from the modified algorithm

4



graph and the computational marked graph. A desighn strategy for achieving

optimum time performance is proposed and illustrated with a design example.

11.2 Diagnostic Tool Development

Although the ATAMMmodel is not complicated in principle, the execution

of a system modelled with it becomeshardly tractable whenboth the number

of nodes as the numberof resources increase. Therefore, it is necessary to

have Diagnostic Tools to explore the execution of a given algorithm. Oneof

the important parameters'necessary to observe is concurrency. Concurrency

is a measure of the numberof resources that work at the sametime for a

specified length of execution of an algorithm. Other parameters include

TBIO (Time BetweenInput and Output), TBO(Time BetweenOutputs), and TBI

(Time Between Inputs). Theseparameters refere to the time performance of

the system: the elapsed time between when input data is read and its

corresponding output data is written (TBIO), the time elapsed between

repetitive output writings (TBO), and the time elapsed between repetitive

inputs data readings (TBI). Another necessary measurementsare the time the

system takes and the different states it goes through to reach steady

state.

The Analyzer, a computer program, provides measurementof the items

denoted above. The input to the program is a file containing a sequential

account of the execution of a concurrent system. It displays the activity

of the individual nodes of a graph. This display is drawn on a commontime

axis for easy reading of the concurrent execution of nodes. An alternate

display is the plotting of the activity of the resources versus time. The

p[ogram also displays the function of concurrency versus time which is now

called Total ResourceUtilization Envelope. For individual data packets,

the program displays the values of TBIO, TBOand TBI. It also reports



general statistics of the transitions per node. This program is primarily

to be used for post-execution detailed analysis of the execution of an

algorithm.

Another computer program, the Graph Simulation/Analyzer, provides not

only simulation of the execution of an algorithm but also analysis of data

immediately after execution. It generates the sequential files containing

firing of transitions in the CMG(Computational Marked Graph) to be analyzed

by the Analyzer, the program described above. It also generates files with

average values of TBO, TBI and TBIO. The simulation module has been

improved so that it may include randomvariables as the values of the tran-

sitions in the CMG. It accepts as input an ASCII file containing a descrip-

tion of the topology of a graph, transition time assignments, priority

assignment, initial marking, numberof resources, etc.

11.3 Testbed Development

A multiprocessor operating system has been developed based on the ATAMM

specifications. It is the third prototype system to have been built in the

past two years. The motiviation for this is to give further credibility to

ATAMMthrough system validation and to provide a testbed experimentation.

This discussion is divided into three design phaseg. In the system parti-

tioning the ATAMM model is divided into logical components. Combined, these

logical components must fully represent the ATAMM description. The next

phase is the hardware mapping in which the logical components are mapped

into a target architecture. Necessary inter-module communications and

control dialogue paths must also be specified. The multiprocessor operating

system implementation is the final design phase and will be referred to

briefly.



Three logical components have been isolated in the ATAMM partition; the

Graph Manager (GM), Funcitonal Unit (FUN), and Global Memory (GLM). The

Graph Manager is responsible for implementing the state transitions of the

processes. It must monitor all token movement within the CMG required to

determine the fireability of a process. When a process can fire the Graph

Manager must assign the first available Functional Unit to that process.

The Functional Unit will then execute all three NMG transitions for that

particular process. It must also, via interrupt, update all important token

movement within the NMG to the Graph Manager. ks a Functional Unit can be

assigned to any process, it must also have the code available for the compu-

tation of every process in the AMG. The Global Memory is the final logical

component in the partition and is responsible for storing data associated

with all Output Full edges in the CMG. Because of this the it must have a

communications path to all Functional Units for both the reading and writing

of data.

The three prototype multiprocessor operating systems previously

mentioned have all had different hardware mappings. Each new mapping was

guided through observaitons made in the development of the previous mapping.

In the current mapping all three logical components are distributed within

each hardware module. The hardware modules chosen are IBM PC/AT's and are

connected on an Ethernet Local Area Network. This mapping presents two

advantages over the previous two in which the logical components were not

completely distributed. First, the redundancy of all logical components

provides a greater degree of fault tolerance. Secondly, a reduction of

inter-module communications, the major bottleneck in multiprocessor design,

is expected as the logical components all reside in the same hardware

module.



The final step in the design process is to develop a multiprocessor

operation system to implement the logical componentsas designated by the

hardware mapping. In addition to the hardware modules, a Sink/Source node

module wasdesigned for the system initialization and monitoring. It is

also responsible for injecting input data into the system and for receiving

output data. The resulting multiprocessor has been successfully developed

and is currently undergoing tests for ATAMMvalidation. Initial results are

positive and all tests should be completed by the end of August.

8



III.O OPTIMUMTIMKPKRFO_

III.i Introduction

The development of a new graph theoretic model for describing the

relation between a decomposed algorithm and its execution in a data flow

environment is presented. Performance measures of computing speed and

throughput capacity are defined. Lower bounds for these performance

measures are established. In Subsection 111.2 of this report, the modeling

process to describe algorithms in data flow architectures, ATAMM, is pre-

sented. The model consists of three Petri net marked graphs called the

algorithm marked graph (AMG), the node marked graph (NMG), and the compu-

tational marked graph (CMG). In Subsection 111.3, the operating character-

istics of these graphs are investigated. A state variable description is

presented and used to establish sthe graph properties of teachability, live-

ness and safeness. Time performance measures for concurrent processing are

defined in Subsection 111.4. The ATAMM model is used as the basis for

calculating analytically lower bounds for these performance measures. Then

in Subsection 111.5, an operating strategy which achieves optimum time per-

formance is developed. Several examples are presented to illustrate these

concepts.

111.2 ATAMMModel Development

In this subsection the ATAMM model to describe concurrent processing of

decomposed algorithm is presented. The model consists of a set of Petri

net marked graphs which incorporate general specifications of communication

and processing associoated with each computational event in a data flow

architecture. First, a detailed description of the problem context is

stated. This is followed by the definition of the ATAMM model consisting of

• 9



the algorithm marked graph, the node marked graph, and the computational

marked graph. Somefamiliarity with Petri nets [I0] and marked graphs [II]

is assumedin this presentation.

The problems of interest are decision-free, computationally complex

problems as are often found in signal processing and control applications.

A problem description normally results in the definition of a function given

by the triple (X,Y,F). The set X represents the set of admissible inputs,

the set Y represents the set of admissible outputs, and F:X->Y is the rule

of correspondence which unambiguously assigns exactly one element from Y to

each element of X. Associated with a computational problem is one or more

algorithms. An algorithm is an explicit mathematical statement, expressed

as an ordered set of primitive operations, which explains how to implement

the rule of correspondence F. In general, a given problem can be decomposed

by several different primitive operator sets. _Iso, for a given primitive

operator set, there are often different orderings of primitive operations

which can be specified to carry out the problem. Of special interest are

algorithm decompositions in which two or more primitive operations can be

performed concurrently. For such decompositions, the potential exists for

decreasing the computational time required to solve the problem by increas-

ing the computational resources which implement the primitive operations

program storage and temporary input and output data containers.

The hardware environment for executing the decomposedalgorithms is

assumedto consist of R identical processors or functional units (FUNs)

where R has a value in the range of two to twenty. This range of resources

is suggested for practical reasons due to the large-grained aspect of the

algorithm decomposition and the need to maintain small communication times

relative to process times. Each FUNis a processor having local memoryfor

4
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program storage and temporary input andoutput data containers. Each FUNcan

execute any algorithm primitive operation. The FUNsshare a commonglobal

memory(GLM)which maybe either centralized or distributed. The coordina-

tion of FUNsin relation to data and control flow is directed by the graph

manager_GRM). The GRMalso may be centralized or distributed. Output

created by the completion of a primitive operation is placed into global

memoryonly after the output data containers have been emptied. That is,

outputs must be consumedas inputs to successor primitive operations before

allowing new data to fill the output locations. Assignment of a functional

unit to a specific algorithm primitive operation is madeby the GRMonly

whenall inputs required by the operation are available in global memoryand

a functional unit is available.

An algorithm marked graph is a marked graph which represents a specific

algorithm decomposition. Vertices of the algorithm graph are in _ one-to-

one correspondence with each occurrence of a primitive operation. The algo-

rithm graph contains an edge (i,j) directed from vertex i to vertex j if the

output of primitive operation i is an input for primitive operation j. Edge

(i,j) is marked with a token if an output from primitive operator i is

available as an input to primitive operator j. When constructing an algo-

rithm graph, vertices (primitive operations) are displayed as circles, and

edges (input-output signals) are displayed as directed line segments con-

necting appropriate vertices. The presence of a token on an edge is indica-

ted by a solid dot placed on the edge. Source transitions and sink transi-

tions for input and output signals are represented as squares. Sources for

constants are not usually included in the algorithm marked graph; however,

triangles are used for this purpose when necessary.

II



To illustrate the construction of an algorithm marked graph, consider

the problem of computing the output of a discrete linear system given a

sequenceof inputs to the system. Let the system be described by the state

equation

x(k) = Ax(k-l) + Bu(k)

and output equation

y(k) = Cx(k).

where x is p-vector, us is an m-vector, and y is an r-vector. The primitive

operations are defined as matrix multiplication and vector addition, and the

natural algorithm decomposition resulting from the state equation descrip-

tion is selected. The algorithm marked graph for this decomposed algorithm

is shown in Fig. [. The initial marking indicates that initial condition

data are available.

The algorithm marked graph is a useful tool for representing decomposed

algorithms and for displaying data flow within an algorithm. However, the

algorithm graph does not display procedures that a computing task. In addi-

tion, the issues of control, time performance, and resource management are

not apparent in this graph. These important aspects of concurrent process-

ing are included in the ATAMM model through the definition of two additional

graphs. The node marked graph (NMG) is defined to model the execution of a

primitive operation. The computational marked graph, obtained from the AMG

and the NMG by a set of construction rules, integrates both the algorithm

requirements and the computing environment requirements into a comprehensive

graph model. These additional marked graphs are defined in the following.

The NMG is a Petri net representation of the performance of a primitive

operation by a functional unit. Three primary activities, reading of input

data from global memory, processing of input data to compute output data,

12



and writing of output data to global memory, are represented as transitions

(vertices) in the NMG. Data and control flow paths are represented as

places (edges), and the presence of signals is notated by tokens marking

appropriate edges. The conditions for firing the process and write tran-

sitions of the NMGare as defined for a general Petri net, while the read

transition has one additional condition for firing. In addition to having a

token present on each incoming signal edge, a functional unit must be avail-

able for assignment to the primitive operation before the read node can

fire. Once assigned, the funcitonal unit is used to implement the read,

process, and write operations before being returned to a queue of available

FUNs. The initial marking for an NMGconsists of a single token in the

"process ready" place. The NMG model is shown in Fig. 2.

A computational marked graph (CMG) is constructed from the AMG and the

NMG by the following rules.

I. Source and sink nodes in the algorithm marked graph are represented

by source and sink nodes in the CMG.

2. Nodes corresponding to primitive operations in the algorithm marked

graph are represented by NMG8 in the CMG.

3. Edges in the algorithm marked graph are represented by edge pairs,

one forward directed for data flow and one backward directed for

control flow, in the CMG. The initial marking for the edge pair

consists of a single token in the forward-directed place if data

are available, or a single token in the backward-directed place if

data are not available.

The play of the CMG proceeds according to the following graph rules.

I. A node is enabled when all incoming edges are marked with a token.

An enabled node fires by encumbering one token from each incoming

13



edge, delaying for somespecified transition time, and then depos-

iting one token on each outgoing edge

2. A source node and a sink node fire whenenabled without regard for

the availability of a FUN.

3. A primitive operation is initiated when the read node of an NMGis

enabled and a FUNis available for assignment to the NMG. A FUN

remains assigned to an NMGuntil completion of the firing of the

write node of the NMG.

In order to illustrate the construction of a computational marked

graph, the CMGcorresponding to the algorithm marked graph of Fig. 1 is

shownin Fig. 3. The computational marked graph is useful because it clear-

ly displays the data and control flow which must occur in any hardware

implementation of the model process, and because it clearly displays the

data and control flow which must occur in any hardware implementation of the

model process, and because it provides a hardware independent context in

which to evaluate process performance.

The complete ATAMM model consists of the algorithm marked graph, the

node marked graph, and the computational marked graph. A pictorial display

of this model is shown in Fig. 4. In the next subsection, important oper-

ating characterists of the ATAMM model are investigated.

111.3 Model Characteristics

In the previous subsection, a marked graph model consisting of the AMG,

the NMG, and the CMG is defined as a means to describe concurrent processing

of decomposed algorithms. In this subsection the ATAMM model is studied

analytically to determine important graph operating characteristics. First,

a state description which expresses the next graph marking as a function of

14



the present marking and a vector indicating which transition is to be fired

is developed. Then, the marked graph properties of teachability, liveness,

and safeness are considered for the CMG. Twoexcellent papers by Murata

[II], [12] on properties of marked graphs are the source for muchof the

material presented in the subsection.

Let Gbe a marked graph consisting of m places and n transitions. The

m-vector Mk denotes the marking vector for G resulting from the firing of

somesequenceof k transitions. The following two definitions are necessary

to develop the state description of the CMG.

Definition i: Complete Incidence Matrix. The complete incidence matrix for

a marked graph G is the (nxm) matrix A = [aij] having rows corresponding to

transitions, columns corresponding to places, and where

a° °

i]

+l(-l) if place j is incident at transition i

and directed out of (into) the transition

if place j is not incident at transition j

Definition 2: Elementary Firing Vector. An elementary firing vector uk is

an n-vector having all zero entries except for the ith component which is 1

denoting that transition i is the kth transition to fire in some transition

firing sequence.

To gain insight to the state equation description, it is helpful to

consider the firing of transition k. If aki = -I(+I), place i is an input

(output) place to transition k. Therefore, transition k is enabled if

M(i) = I for each input place. When transition k fires, one token is

removed from each input place and one token is added to each output place.

These observations lead to the following next state description for a marked

graph.
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Property I: Next State Description. For a marked graph G with present

marking vector Mk_ 1 and elementary firing vector Uk, the next marking vector

is given by

Mk= Mk_ 1 +ATu k.

The next state description can be used to express the graph marking

resulting from the application of sequences of elementary firing vectors.

This is done in the next definition and property.

Definition 3: Firing Count Vector. Let (Ul,U2,...,Ud) be a sequence of

elementary firing vectors taking a marked graph G from an initial marking M0

to a destination marking Md. The firing count vector xd for this firing

sequence is defined by

Xd = _ u k •
k=l

Property 2: State Equation Description. For a marked graph G with initial

marking vector M0, the marking vector resulting from the application of

elementary firing vector sequence (Ul, u2,...,Ud) is given by

Md = M 0 + ATxd .

Using the state description of a marked graph as a basis, the property

of teachability is investigated. Necessary and sufficient conditions for a

CMG marking vector to be reachable from an initial marking are established,
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and it is shownthat the numberof tokens contained in any directed circuit

of the CMGis invariant under transition firings.

Definition 4: Reachability. A marking Md is reachable from an initial

marking M 0 if there exists a sequence of elementary firing vectors that

transforms M0 to Md.

The following definition is required to state the reachability condi-

tions for a CMG.

Definition 5: Fundamental Circuit Matrix. Let T be a tree of a connected

marked graph G. The set of (m-n+l) circuits, each uniquely formed by

appending one cotree edge to the tree, is called the set of fundamental

circuits of G for tree T [13]. The fundamental circuit matrix for G for

tree T is the2(m-n+l x (m) matrix Bf _ [bij] having rows corresponding to

fundamental circuits, columns corresponding to places, and where

+i(-i) if place j is containedin f-circuit i and

the place and circuit drections agree

(disagree)

if place j is not contained in f-circuit i..

Property 3: Reachability in the CMG. In a computational marked graph G, a

marking Md is reach;able from an initial marking M 0 if and only if BfM d =

BfMo, where Bf is a fundamental circuit matrix for G.

Proof. It is shown in [II] (Theorem 3) that the property is true for marked

graphs containing no token-free directed circuits. By the construction

rules for the CMG, directed circuits occur in exactly four ways. First,

each NMG consists of a directed circuit which contains an initial marking

token in the "process ready" place. Second, a directed circuit is formed

each time an NMG is linked to another NMG. Since one of the two linking
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places contains an initial marking token and both places are contained in

the circuit, this circuit is never token free. Third, directed circuits

exist in the CMGcorresponding to interconnected feedforward paths in the

algorithm marked graph. Each such circuit contains one or morebackward-

directed cohtrol edge containing one initial marking token. Fourth,

directed circuits exist in the CMGcorresponding to directed circuits in the

algorithm marked graph. Each such circuit contains exactly one forward-

directed edge containing one initial marking token representing initial

condition data. Therefore, the CMGcontains no token-free directed circuits

and the property follows.

As a direct consequenceof the reachability property of the CMG,it can

be shownthat the numberof tokens in any directed circuit is constant.

This characteristic is stated as Property 4.

Property 4: Token Count Invariance. In a CMG, the number of tokens'con-

tained in a directed circuit is invariant under transition firing.

Proof. Consider a directed circuit C of a CMG. The entries in the row of a

circuit matrix B corresponding to C are ±I in columns representing edges in

C and are 0 otherwise. If M is a marking vector, the component of BM

corresponding to C is equal to the number of tokens in directed circuit C

under marking M. Therefore, if M d is any marking reachable from an initial

marking M0, it follows from Property 3 that BMd = BM O. That is, the number

tokens in directed circuit C under initial marking M0 is equal to the number

of tokens under any marking Md reachable from M 0. This completes the proof.

Next, liveness and a closely related property called consistency are

considered. It is shown that the CMG is live and consistent.
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Definition 6: Liveness. & marked graph G is said to be live for a marking

M if, for all markings reachable from M, it is possible to fire any tran-

sition of G by progressing through some transition firing sequence.

Property 5: Liveness in the CMG. The computational marked graph is live

for all appropriate initial markling vectors.

Proof. It is shown in [12] (Property 2) that a marked graph G is live for a

marking M if and only if G contains no token-free directed circuits in mark-

ing M. As stated in the proof of Property 3, for all appropriate initial

markings M 0, the CMG contains no token-free directed circuits. Therefore,

the property follows.

Definition 7: Consistency. A marked graph G is said to be consistent if

there exists a marking M and a transition firing sequence S from M back to M

such that every transition occurs at least once is S.

Property 6: Consistency in CMG. A connected computational marked graph G

is consistent. In addition, each transition of G occurs an equal number of

times in a firing sequence from a marking M back to M.

Proof. From Property 2, if a CMG is cosistent, then there exists a marking

T

Md = M 0 and a firing count vector x d > 0 such that A xd = 0. The converse

is also true. The incidence matrix for a marked graph G is an (n x m)

matrix A. If G is connected, then it is known [13] that the rank of A is n-

T It is observed that

I, and thus the null space of A has dimension one.

T
each row of A has one (I), one (-I), and all remaining terms are (0)

.th AT
Therefore, if C. denotes the J column of ' it follows that

J

n

C. = 0"

j=1 J
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Thus, there exists a vector xd = [k k ... k] T k > 0, which uniquely satis-

fies ATx d = 0. This completes the proof.

The final graph property considered in this section is safeness. This

property is first defined, and then it is shown that CMG is safe.

Definition 8: Safeness. A marked graph G is said to be safe for marking M

if, for all markings reachable from M, no place contains more than one

token.

Property 7: Safeness in the CMG. The computational marked graph is safe

for all appropriate initial marking vectors.

Proof. By Property 4, the token count for each directed circuit of the CMG

is invariant under transition firing. Therefore it is sufficient to show

that each edge of the CMG belongs to at least one directed circuit contain-

ing a single token. By the construction rules for the CMG, all CMG edges

can be classified into two groups, NMG edges and linking edges. NMG edges

occur in groups of three and always form a directed circuit containing one

token. Linking edges occur in pairs, one forward directed and one backward

directed, and also form a directed circuit with the forward directed edges

of the NMG. One of the linking edges, but not both, always contains one

token while the forward directed edges of the NMG contain no tokens. There-

fore, each edge of the CMG is contained in a directed circuit with one

token, and the property follows.

111.4 Performance Analysis

The importance of the ATAMM model is that it establishes a context in

which to investigate the performance of decomposed algorithms in multipro-

cessor data flow architectures. In this subsection, performance measures

indicating computing speed and throughput capacity are defined. Bounds for
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these quantities are calculated analytically from the algorithm marked graph

and the computational marked graph. This information is essential for effi-

ciently matching algorithm decompositions with architecture implementations.

The work presented in this subsection is an interesting application and

extensio_ of recent investigations of the performance of Petri Nets [14],

[15] and marked graphs [16].

It is assumedthat a decomposedalgorithm is implemented in a multipro-

cessor architecture containing R computing resources or functional units.

Each functional unit is capable of performing any of the primitive oper-

ations whose sequencedefines the decomposition. A computational task con-

sists of completing the algorithm for one frame of data and is initiated

whenan input data token from the source node is encumbered. Task output

occurs when a corresponding output data token is deposited at the output

sink node. A task is completed whenall computing associoated wi_h the task

is completed. It should be noted that task output and task completion do

not always coincide. In many iterative signal processing algorithms, com-

puting to generate initial conditions for the next iteration often occurs

after an output has been calculated. Task completion is usually indicated

in the AMGor CMGby the return of the graph to somesteady-state initial

marking. To facilitate measurementof throughput capacity, it is assumed

that tasks are repeated periodically with new input data sets. Newdata

sets are available continuously as input tokens from the input source node.

Included in this problem class are iterative algorithms where the present

task requires as inputs data from previous task calculations.

Concurrency in this problem setting occurs in two ways. First, differ-

ent functional units mayperform simultaneously several primitive operations

belonging to a single task. This type of concurrency is referred to as
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vertical concurrency. Vertical concurrency has a direct effect on task

computing speed. It is limited by the numberof primitive operations that

can be performed simultaneously in a given algorithm decomposition, and by

the numberof functional units available to perform the primitive opera-

tions. Second, different functional units may perform simultaneously r

primitive operations belonging to different tasks sequentially input to the

computing system. Called horizontal concurrency, this type of concurrency

has a direct effect on throughput capacity. It is limited by the capacity

of the graph to accommodateadditional task inputs, and by the numberof

functional units available to implement the tasks. In the following it is

shownthat the process of algorithm decomposition imposes bounds on the

amount of vertical concurrecy and horizontal concurrency possible in a given

problem. If sufficient computing resources are available, operation at

these bounds can be achieved. If the numberof computing resources is limi-

ted, the bounds cannot be reached simultaneously and trade-offs between the

amount of vertical concurrecy and horizontal concurrency are possible.

Three performance measures for concurrent processing are defined. The

first two parameters, TBIO and TT, are indicators of computing speed and

reflect the degree of vertical concurrency. The third parameter, TBO, is a

measureof throughput capacity and thus reflects the degree of horizontal

and vertical concurrency.

Definition 9: TBIO. The performance measure TBIO is the computing time

which elapses between a task input and the corresponding task output.

Definition I0: TT. The performance measure TT is the computing time which

elapses between a task input and the completion of all computation associ-

ated with that task.
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Definition II: TBO. The performance measure TBO is the computing time

which elapses between successive task outputs when the graph is operating

periodically in steady-state.

The remainder of this section is devoted to developing lower bounds for

these performance measures.

Let G denote an algorithm marked graph representing as decomposed

algorithm. The lower bound for TBIO is the shortest time required for a

data token from the data input source to propagate through the graph to the

data output sink. Similiarly, the lower bound for TT is the shortest time

required to complete all computing activity initiated by the injection of a

data input source. These shortest times are the actual performance times

when only a single task is active in the graph during any time interval (no

horizontal concurrency), and as many computing resources as are required are

available (maximum vertical concurrency). Under these operating conditions,

lower bounds for TBIO and TT are calculated by identifying certain longest

paths in a graph obtained from the algorithm marked graph. This new graph,

called the modified algorithm graph GM, is defined and then used to

determine lower bounds for TBIO and TT.

Definition 12: Modified Algorithm Graph. Let Pi be a place of G, directed

which contains a token of the initial
from transition t r to transition t s,

marking. The modified algorithm graph GM is obtained from the graph G by

the following construction rules.

I. Place Pi is deleted from G.

2. A new place Pil' directed from the data input source to transition

t , is added to G.
s

• different from all other output sinks, and a
3. A new output sink sI

new place Pi2' directed from transition tr to si, are added to G.
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4. The above rules are repeated for each place of G containing a token

of the initial marking.

Lower bounds for TBIOand TT are presented in Theoremi and Theorem2

respectively.

Theorem I: Lower Bound for TBIO. Let PI be the ith directed path in GM

from the data input source to the data output sink, and let T(P.) denote the
i

sum of transition times for transitions contained in Pi" Then,

TBIOLB = Max {T(Pi)},

where the maximum is taken over all paths P'1 graph GM.

Proof. Without loss of generality, let tf be the last transition in all

paths P. directed from the data input source to the data output sink Tran-i

sition tf is enabled when each input place for tf contains a token. Since

by assumption a computing resource is available, tf fires as soon as it

becomes enabled. Let pq be the last input place for tf to acquire a token,

and let t be the input transition for place p . Continuing this labeling
g q

procedure results in a backward path construction process. This process is

repeated, first at t , and then at each succeeding transition until the data
g

input source is reached, identifying a path pj. By the construction process

for the path, it is clear that T(Pj) = Max {T(Pi)}, where the maximum is

over all paths P'l in GM. It is also clear that TBIOLB can be no shorter

than T(P.) so that TBIOLB _ T(P.). Since a computing resource is availableJ J

when each transition in P. is enabled, the time between input and corre-
J

sponding output can be no longer than T(P.) so that TBIOLB _ T(P.). There-
J J

fore, TBIOLB = T(P.) = Max {T(Pi) } where the maximum is over all paths P.J ' i
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in GM. This completes the proof.
th

Theorem 2: Lower Bound for TT. Let P. be the i
i

directed path in GM from

the data input source to any output sink and let T(P.) denote the sum ofJ I

transition times of transitions contained in P.. Then,
i

TTLB = Max {T(Pi) 1

where the maximum is taken over all paths P in graph G .i M

Proof. By the construction rules for graph GM, a task is initiated when

input data tokens are input from the data input source, and is completed

when all output sinks have accepted tokens. Therefore, TT is the time which

elapses from injection of input tokens to the arrival of a token at the last

fired output sink. Let T(P t) = Max{T(Pi) _, Pi in _' be the longest path

time of paths from the data input source sI to any output sink, say st .

Since a token must reach sink st before a task is completed, it follows that

TTLB _ T(Pt). Since a resource is available for each transition to fire

when enabled, and since Pt is the longest path in GM, it also follows that

TTLB _ T(Pt). Therefore, TTLB = T(P t) = Max{T(Pi)_, where the maximum is

over all paths P. in GM. This completes the proof.
i

To illustrate the application of Theorem 1 and Theorem 2, TBIOLB and

TTLB are computed for the algorithm graph shown in Fig. I. For this exam-

ple, the following transition times are assumed: T(1) = 4, T(2) = i, T(3) =

5, and T(4) = 6. The modified algorithm graph coresponding to Fig. I is

shown in Fig. 5. The modified algorithm graph contains two paths directed

from the data input source s I to the data output sink so • Path PI consists

of edge set { I, 2, 3, 41 with T(P I) = I0, and path P2 consists of edge set
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{5-1, 3, _ With T(P 2) = 6. Therefore, since T(P I) > T(P2) , path P1 deter-

mines the lower bound for TBIO and TBIOLB = I0. The modified algorithm

graph contains two additional directed paths from the data input source s I

to the output sink s 5. Path P3 consists of edge set { i, 2, 6, 5-2} with

T(P 3) = 11, and path P4 consists of edge set {5-I, 6, 5-2} with T(P 4) =

7. Since T(P 3) > T(P I) > T(P 4) > T(P2), path P3 determines the lower bound

for TT and TTLB = ii.

Next a lower bound for the performance measure TBO is presented. Let G

be a computational marked graph representing a decomposed algorithm. It is

assumed that operating conditions for G are set to maximize horizontal con-

currency. That is, data tokens are continuously available at the data input

source, and as many computing resources as needed can be called to perform

primitive operations. With these conditions, the graph plays periodically

in steady-state, and TBOLB is the shortest time possible between successive

outputs.

Theorem 3: Lower Bound for TBO. Let G be a computational marked graph and

let C. be the ith directed circuit in G. The notation T(C.) denotes the sum
i l

of transition times of transitions contained in C., and M(C.) denotes the
l i

number of tokens contained in C.. Then,
1

TBOLB = Max {T(Ci)/M(Ci) },

where the maximum is taken over all directed circuits in G.

Proof. Without loss of generality, let tf be the output transition in G so

that an output is produced each time tf completes the firing. Then TBOLB is

the minimum firing period of transition tf. By Property 6, G is consistent

so that all transitions of G fire periodically with minimum period TBO
LB
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It is shownin [12] (pp. 58-60) that the minimumfiring period of each tran-

sition of a marked graph is given by Max{T(Ci)/M(C.)},_ where the maximumis

taken over all directed circuits C. in G. Therefore, the theorem follows.i

The computational marked graph shownin Fig. 3 is used to illustrate

Theorem3. This CMGcontains manydirected circuits. However, the directed

circuit which contains all NMGnodes of transitions 2 and 4 contains only

one token and maximizes the ratio T(C.)/M(C.). Therefore, the shortest timei i

possible between successive outputs in this graph is TBOLB= 7. In the next

subsection, a strategy for achieving optimum time performance is investi-

gated.

111.5 Strategy for OptimumTime Performance

A model describing decomposedalgorithms for implementation in a dis-

tributed data flow architecture is described in Subsections 111.2 and 111.3,

and performance measuresare defined in Subsection 111.4. An important

problem remaining is to develop an operating strategy for the ATAMMmodel

which achieves optimum time performance with a minimumnumberof computing

resources. Unfortunately, this problem is equivalent to a class of schedul-

ing problems which is knownto be NP-complete. Thus, there exists no algo-

rithm for obtaining an optimum solution which is better than enumerating all

possible solutions and then choosing the best one. However, an important

suboptimal operating strategy which achieves optimum time performance, but

possibly requires more than the minimumnumberof computing resources, has

been developed. This strategy is presented and illustrated by example in

this subsection.

Whenpresented with continuously available input data sets, the natural

behavior of a data flow architecture results in operation where new data

sets are accepted as rapidly as the available resources permit. That is,
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the architecture naturally operates at high levels of horizontal concurrency

with the possible loss of capability for achieving high levels of vertical

concurrency. This results in performance characterized by high throughput

rates, TBO=TBOLB, but relatively poor task computing speed so that TBIO > >

TBIOLB and TT > TTLB. In many signal processing and control applications,

it is important to achieve both high throughput rate and high task computing

speeds. Often, designers are willing to provide extra hardware to realize

optimum time performance. The suboptimal operating strategy presented in

this section results in performance having the following characteristics.

I. When R ) RMax, operation achieves TBIOLB , and TBOLB. RMa x is

computed in implementing the strategy, and represents the minimum

number of resources which insures maximum horizontal concurrency

and maximum vertical concurrency under this strategy.

2. When RMa x > R ) RMi n, operation achieves TBIOLB and TTLB , But TBO

) TBOLB. The strategy preserves task computing speed or vertical

concurrency at the expense of throughput rate or horizontal con-

currency. RMi n is also computed in implementing the strategy, and

represents the minimum number of resources needed to maintain

vertical concurrency with limited horizontal concurrency.

3. When RMi n > R ) I, operation continues but performance degrades so

that TBIO ) TBIOLB, TT ) TTLB, and TBO _ TBOLB.

Implementation of the operating strategy is illustrated in Fig. 6. All

that is required is to limit the rate at which new input data are presented

to the CMG. This is accomplished by adding a control transition connected

in a directed circuit with the data input source. The control transition

imposes a minimum delay of D time units between inputs. Delay D is chosen

according to the following rule:
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D

TBOL B R _ RMa x

TBOMin RMa x > R _ RMi n

TCE RMin < R > i.

TCE denotes the total computing effort required to complete the task, and

TBOMin ' RMax, and RMi n are computed as part of the strategy design proce-

dure.

The operating strategy design process consists of five steps. These

steps are presented and explained in the remainder of this subsection. An

operating strategy is developed for the example algorithm graph shown in

Fig. 7 to illustrate each step as it is presented.

Step I. Choose a convenient transition firing rule. A rule to determine

when an enabled transition in the CMG fires must be specified. A natural

rule is to specify that enabled transitions fire when a computing resource

is available. If conflict exists, such as when there are more enabled

transitions than computing resources, then firing occurs according to a

priority ordering of the transitions. For the example algorithm graph, the

highest to lowest priority ordering of the transitions is chosen as (5,4,3,-

7,2,6,1).

Step 2. Determine TBOLB- The performance bound TBOLB is found from the

computational marked graph by application of Theorem 3. The CMG correspond-

ing to the example algorithm graph is shown in Fig. 8. The directed circuit

identified in this figure contains 6 transition time units and 2 tokens,

and maximizes the ratio T(C.)/M(C.) for all directed circuits. Therefore,
1 1

TBOLB = 3.

Step 3. Determine the resource utilization envelope of a single task

required for maximum vertical concurrency at steady-state with TBO = TBOLB.
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The purpose of this step is to determine the numberof computing resources

required as a function of time to achieve maximumvertical concurrency in a

single task. The envelope is determined by playing the graph assuming

unlimited resources and an input rate of TBOLBuntil steady-state operation

is reached. The resource utilization envelope is obtained by counting the

numberof computing resources used for a single task during each time

interval. The play of the example algorithm graph under these conditions is

shownin Fig. 9, and the resulting resource utilization envelope is shown in

Fig. I0.

Step 4. Stabilize the resource utilization envelope by adding control

places as necessary. If the time between inputs to the CMG is increased

above TBOLB , the resource utilization envelope may change from that observed

in Step 3. Since knowledge of the envelope is required to calculate the

number of required resources, additional places are appended to the AMG and

the CMG to freeze the shape of the envelope. For example, the play of the

example algorithm graph of Fig. 8 with an injection time of 4 is shown in

Fig. ii. At this slower injection rate, transition 6 fires one time unit

earlier. To prevent time movement of transition 6, a control place directed

from transition 2 to transition 6 is added. This place prevents the firing

of transition 6 until transition 2 has completed firing. Thus the resource

utilization envelope computed for an input period of TBOLB is the envelope

for all input periods TBO ) TBOLB.

Step 5. Compute RMax, RMin, and TBOMin(R ) using the resource utilization

envelope. RMa x is determined by overlaying resource utilization require-

ments, each delayed by TBOLB with respect to the previous one, as shown in

Fig. 12 for the example. RMa x is equal to the largest resource requirement
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during any time interval within the steady state operating period. RMin is

the minimumnumberof resources necessary to insure maximumvertical con-

currency with no horizontal concurrency. This number is equal to the maxi-

mumresource requirement indicated in the resource utilization envelope for

a single" task. For the example problem, RMax = 5 and RMin = 3. The value

of TBOMin for each resource numberR between RMax and RMin inclusive, is

determined by increasing the delay between overlapping resource utilization

envelopes until the maximumresource requirement is R. TBOMin is the small-

est input delay to produce this resource requirement. For the example, the

calculations of TBOMin for R = 4 and R = 3 are illustrated in Fig. 13 and

Fig. 14 respectively. The results of these calculations are TBOMin(4)= 3.5

and TBOMin(3)= 4.

The performance of the example algorithm graph is summarizedin Fig.

15. Optimumtime performance of TBIOLB= TTLB= 7 and TBOLB = 3 _s achieved

for R ) RMa x = 5. At R = 4, TBIO and TT remain at the optimum values and

TBOMi n decreases to 3.5. At R ffi3, TBIO and TT again remain at the optimum

values and TBOMi n decreases to 4. For values of R below RMi n, time perform-

ance generally degrades. However, in this example TBIO and TT remain at 7

for R = 2, while TBOMi n decreases to 6. Finally, at R - I, performance

degrades to TBIO = TT = TBO ffiTCE ffiI0. Another perspective of algorithm

performance is shown in Fig. 16. This figure displays throughput rate,

(I/TBO), as a function of the number of functional units R. The peak height

of each bar indicates the maximum throughput rate which can be achieved with

the indicated number of processors. The bars also indicate more clearly

that operation at any throughput rate less than maximum is possible for a

given number of functional units. This design procedure is easily applied
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to much larger algorithm graphs more representative of actual signal

processing and control problems.
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IV.O DIAGNOSTIC TOOL DEVELOPHENT

IV.I Analyzer Development

IV.I.I Introduction

Concurrent processing is the capability of a computer system to execute

two or more tasks at the same time. For example, a processor may execute a

given computation at the same time that an I/O coprocessor performs an I/O

operation. There are new computer architectures that organize processors in a

parallel fashion requiring customized algorithms to take advantage of the

parallelism of the systems. However, the models developed to describe these

architectures do not adequately model the issues of scheduling, coordination,

and communication (Ref. 17). On the other hand, the strategy proposed by

Stoughton and Mielke (Ref. 17-19) addresses these particular issues. The

strategy uses timed Petri nets (Ref. 20) to model processor behavior for each

computational node of an algorithm graph.

Detailed data are needed to evaluate and study the performance of a

concurrent processing system. Data such as the function of concurrency with

respect to time can be investigated. Therefore, a sophisticated evaluation of

the concurrent system can be performed. To achieve this objective, it is

indispensable that data, such as when the processing of a data packet is

initiated and when it is terminated, be available. Performance measures such

as TBIO or TBO can be obtained from global information such as when an input

is read by the graph and when its corresponding output is written. This kind

of information can be obtained from an outside observer which monitors the

system. The best information the system is able to provide is the firing of

every transition of every node during execution. With these data, a more

comprehensive study of a concurrent processing system can be done. Although

the system itself is used to provide the information, it does not affect the
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performance of the system due to the relatively low speed communication chan-

nels used in the prototype. Another method to probe the system should be

devised if high speed communication channels are to be used. This chapter

describes an analyzer system that yields the required evaluation. In Sub-

section IV.I.I, a prototype system and its communication events will be close-

ly examined. What the Diagnostic Routines do in the Graph Managerand their

effect in the overall performance is contained in Subsection IV.I.3. How

information of internal events is recorded is presented in Subsection IV.I.4.

In Subsection IV.I.5, generalities of the Analyzer program are examined,

including what information is input to it and what is obtained as output data.

In Subsections IV.I.6, IV.I.7 and IV.I.8, how the Analyzer program processes

this output data to generate measurement information is presented. These

measurements include TBIO (Time between Input and Output), TBI (Time between

Inputs), TBO (Time between Outputs), concurrency of the computing system and

general average process times. In the last two Subsections IV.I.9 and

IV.I.IO, a different tool is presented. This tool integrates the simulation

•of the system and the analyzer in one program.

IV.I.2 Prototype and Its Communication Events

A prototype of a concurrent processing system was developed. It was

used to prove some of the theories of the graph representation of such systems

and to establish a basis for comparison of the simulation program to its

hardware counterpart. The block diagram of the prototype, which was origi-

nally presented in (Ref. 17), is shown in Fig. 17.

The system consists of several S-100 units using Intel 8088 micropro-

cessors. Each unit has I/O boards to communicate with the external world as

well as 32k of random access memory (RAM). For test purposes, there are three
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units acting as processing elements or Functional Units, one as the Graph

Managerand one that serves as Global Memory. The communication between them

is madethrough serial ports (Standard RS-232). An IBM Personal ComputerXT

(IBM-PC/XT) is used to communicatewith the Graph Manager. A communication

channel can be set through the Graph Manager to the Functional Units and the

Global Memory.

The Graph Manager is designed to monitor the graph execution and is

itself controlled by the data flow in the system. The Graph Managerkeeps a

record of the places in the graph as well as which functional unit is per-

forming which process node. The Graph Manager "schedules" the assignment of a

functional unit to a process node according to the priority of the nodes,

functional units available and the process nodes that can be fired.

A serial communication link is set between the Graph Managerand every

Functional Unit. A link is also set between the Global Memoryand every

Functional Unit. Serial communication between the IBM-PC/XTand the Graph

Manager is used for initialization, and for controlling and monitoring of the

system.

Whena node which is found that can be fired, i.e., its input places are

full and its output places are empty (the last requisite for single node model

only), such node is assigned to a Functional Unit; i.e., that node is fired.

To fire a node, a communications protocol is initiated between the Graph

Managerand an available Functional Unit, as shownin Figure 18. This proto-

col begins with the code word D for Do; it is followed by a Task Number, the

Inputs places or labels, and the Output places. This communication event is

called Assign Task. This information, which is given to the Functional Unit,

is taken from the graph data that are in the Graph Manager's memory. In this

step a task or a node is said to be assigned to a Functional Unit.
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The next piece of communication done between the assigned Functional Unit

and the Graph Manager is the acknowledgementfrom the Functional Unit that the

input places have been read (Acknowledge Input). The Functional Unit reads

the data from the Global Memoryusing another protocol before Acknowledge

Input is sent to the Graph Manager.

Process of data is started as soon as the input data are acknowledgedby

the Functional Unit. The unit communicateswith the Graph Manager indicating

that the process is finished when the process is done and that it is ready to

place the output data in the Global Memory. The token information of the

output places of the associated node is examined and it is verified that the

output places are empty (the latter event is true only for the triple node

model). The code for Outputs Empty is sent to the Functional Unit that is

working on that node.

The data is written to the output places once the Functional U_it has

clearance for writing. The Graph Manager is informed when the output is

written and the Functional Unit is freed; i.e., the Functional Unit is in a

wait state until the next task is assigned to it.

IV.l.3 Graph Manager Dla2nostic Routines

The entire concurrent processing system is accessible to the Graph Man-

ager; therefore, the Graph Manager is the most suitable subsystem to inform

the outside world of what events are taking place in the concurrent system.

In order to keep a proper time record of the different events in the

graph, an internal real-time clock is started simultaneously with the exe-

cution of the graph. As each event is recorded, the clock is read to register

the time at which the event is taking place.
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There are five different events that are recorded. These correspond to

the communication events previously mentioned:

i (F) Firing of a process node and binding to a Functional Unit.

"Assign Task".

2 (I) Input places read by the Functional Unit (process node).

,,AcknowledgeInput".

3

4

5

(p) Process done by the Functional Unit (process node).

(S) Output places empty. "Enable Outputs".

(O) Output places written by the Functional Unit (process node).

,,AcknowledgeOutput".

It should be noted that after a node and a Functional Unit have been

assigned to each other, they cannot be distinguished from each other. They

become one entity and is the only time when either one, the node or the

Functional Unit, is considered active.

Every event is recorded in the following format:

T{clock}N{node number}{event}[functional unit number]

where levent} can be any of the next letters:

F (The node fires),

I (The input data is read),

p (The process is done),

S (The output places are empty), and

O (The output data is written).
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The parameter of [functional unit number] is only written when {event} is

equal to 'F.' To simplify the reading of the file, commasare inserted

between every letter and number. The output file of the Simulation program

(Ref. 21) does not require such an adjustment or addition since it is already

provided wi.th commas.

Any probe that is installed in a system for testing purposes introduces

someerror in the reading. The probe used here is no exception to the rule

and, in order to minimize the error, a special interrupt driven routine was

written. The diagnostic routines use a buffer to write the information of

every graph event. This buffer is accessed every time the real-tlme clock is

incremented and if the serial port to the IBM-PCis ready to send a character,

this routine sends the next character in the buffer. If there are no charac-

ters in the buffer or the serial port is not ready the routine just increments

the internal clock and exits without further action. To minimize the time

that would take to write the commasto the output, a post-processor program

was written that inserts the commasin their proper places. Due to the low

speed communication channels, this schemeis good enough to minimize any delay

introduced in the system by these Diagnostic Subroutines.

IV.I.4 Seauential Account for Concu[rent Proqessin_

All the events that are reported in the format explained in Subsection

IV.3.3 are captured in a file that becomes what has been called the "ticker

tape". This file contains all the necessary information to analyze the per-

formance of the system. This file is called the FIPSO file because it

accounts for Firing, Input, Process, OutStat and Output of every node in the

graph. OutStat is the "enable outputs" signal sent by the Graph Manager to
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the Functional Unit as shown in Fig. 18. A sample of a FIPSO file is pre-

sented in Fig. 19.

If the time between two different events is desired, the difference

between the first and the last has to be computed. Or if the number of

computers that were working at the same time during a certain interval is

requested, the computations or procedures to obtain this number are much more

complex, but not impossible to obtain.

With this kind of information, the encumbering and depositing of tokens

can be monitored, although there is no direct information about these parti-

cular events. Knowing the graph topology, the depositing of tokens is done

when a node writes data to its output places. The tokens are encumbered when

a specific node is fired. Although it is not obvious, any type of event can

be registered with this information. Getting the information can be a complex

job but with the help of a specialized program this can be done rather

easily.

IV.I.5 Analyze_ Program

The Analyzer is a program that reads FIPSO files and obtains different

data from the execution of the given graph (see Fig. 20). The data is

processed to obtain such information as TBO and TBIO.

The file is read and the information is placed in a two-dimensional

array, which for convenience is also called the FIPSO array. This array has

fields defined as follows:
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Clock Node I

Event #I [ ] [ ]

Event #2 [ ] [ ]

Event #3 [ ] [ ]

: : :

Node 2 Node 3

[ ] [ ]

[ ] [ ]

[ ] [ ]

:

:

:

The clock field contains the value of the clock at the time of the event.

The node field contains a code that indicates the event the node is in and, if

in any, what functional unit is working on it.

The primary display of this program shows the activity of every node in

the graph (see Fig. 21). The display is actually several plots aligned in

time, i.e., all of them sharing the same time axis. In this way the activity

of every node can be compared with the rest. For example, it can be deter-

mined if several nodes were active at the same time. Another display shows

the activity of every functional unit instead of the nodes (see Fig. 22).

Among other data, the concurrency of the system can be extracted at any inter-

val in time or for the entire graph execution. In this manner, there is a

display of the concurrency as a function of time. Other data are obtained and

are explained in detail in the following sections.

IV.l.6 Measurement of TBIO. TBO. TBI

To measure TBIO, TBO, and TBI of the system, there is the need to know

which are the input and output nodes of the system. Since this cannot be

reliably extracted from the obtained information, these are parameters that

have to be supplied beforehand to calculate the desired data. After the

40



program determines which nodes are the input and the output of the system, it

proceeds to search in the matrix for occurrence of

i) When input data is read by the input node, and

2) When output data is written by the output node.

These times are recorded in another matrix for further use. Every time an

output is written by the output node the time from its corresponding input is

calculated and stored in the same array.

After every output has been recorded, TBI and TBO are calculated. For

TBI, this is done starting from the last input entry and going down to the

second input entry, substituting the ith entry by the difference of the ith

entry and the i-lst entry. Calculation of TBO is done similarly, except that

the output data is used instead of the input data. This output difference

calculation may be expressed by

tOi - tOi tOi-i for i- n, n-l, n-2 .... 2

where n is the number of outputs.

larly performed by

The input difference calculation is simi-

tli - tli - tli-I for i - n, n-l, n-2 .... 2

where n is the number of inputs.

The display yields such information as when the system reached steady

state (see Figure 23). When TBI, TBO, and TBIO do not change from one data

packet to the next the system is said to be in steady state.
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IV.I.7 Concurrency Measurement

Concurrency is the property associated with the capability of a computing

system of executing two or more tasks at the same time. The concurrency

function or what has lately been called the "Resource Utilization Envelope"

can be measured or displayed in a rather simple fashion.

To obtain the concurrency information, the FIPSO array is swept in its

two dimensions. The array is swept along the "event" rows and along the

clock and nodes columns (see Subsection 3.4). At every row in the array,

every node is checked for activity and the sum of all active nodes is obtained

for that time or row. This is done for every row in the array and the

function of number of resources vs. time is plotted on the screen. This is

the Concurrency Display (see Fig. 24).

There is a value that is also obtained. It is called Computing Power

(CP). This value is equal to the area under the curve of the Concurrency

Display or the "Resource Utilization Envelope" The units of this figure is

"computer-seconds". The "Resource Utilization" can be obtained by

CP * i00
RU -

n * T E

where RU is Resource Utilization (%), CP is Computing Power (computer-

seconds), n is the number of resources (computers) and TE is Execution Time

(seconds). These two quantities can be obtained for the entire execution or

for a portion of it. The interval over which the evaluation is made is

defined by the user.
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A table showing percentages of numbersof resources concurrently used

with respect to the execution time is displayed. Thus the maximumpossible

concurrency and its percentage with respect to the execution time can be

determined.

IV.I.8 General Statistics

The different transition times have an exact value in the original simu-

lation program (Ref. 21). However, in a hardware implementation there are

some variations in these transition times. For example, a memory reading may

take a longer or shorter time than expected.

There is a menu option that allows the user to get the average transition

time for any node. The only parameter supplied is the node number. The

program will scan the FIPSO array and calculate the average time to read the

input data, process the data, wait for output place clearance and write the

output data for the node indicated.

In a hardware implementation of this concurrent system, the different

computers that serve as resources or functional units may have different main

clocks, or can be totally different computers and of course have some differ-

ences in the time that they would take to either read, process or write data.

This provides a way to obtain average time values of the activities in the

system for any given node.

IV.I.9 Graph Simulation/Analyzer

The Analyzer program is an invaluable tool for the analysis of the FIPSO

file of a single simulation. If the need for exploring the effect of param-

eter variation arises additional program support is needed. This program is
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called Graph Simulatlon/Analyzer program. This program controls the simu-

lation and, immediately after execution, analyzes its data to obtain the

desired result or reading. Sometimesonly a certain numberof values are

required to be analyzed and then this specialized program is ideal for auto-

mated or batch simulation and execution analysis. An overview of its features

is presented in this subsection.

The Graph Simulatlon/Analyzer program contains basically the samesimu-

lation kernel that the original Simulation program (Ref. 21). It has been

modified to provide the use of randomvariables as transition times.

The original Simulation program is not only a simulator but also a graph

creator, i.e., the graph need not be defined when the program is called, but

can be defined by the use of graphics commands. The Graph Simulation/Analyzer

needs to be supplied with a graph description and simulation control (GDSC)

file (see Fig. 25). This is a text file that can be created with any pure

ASCII word processor and the commandsyntax can be found in the manual of the

program in the appendix of this thesis.

The main purpose of this new program is to "schedule" a series of simu-

lations of a graph, change parameters, and collect specific output data such

as ATBIO (Average TBIO in steady state) or the usual FIPSOfiles. One of the

advantages over the former simulation program is that most of the program

setup can be in the GDSC file or, in short, the graph file. In this way,

setting up a simulation can be as quick as loading the graph file and typing a

few keystrokes. One of the disadvantages is that the execution of the graph

cannot be seen graphically. The only parameters that can be observed are the

clock and the number of outputs from the graph. Even the clock can be

suppressed from updating to reduce screen update overload. A notable differ-

ence with respect to the former simulation is the capability of adding random
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variables to the different transition times in a graph. The range of vari-

ation is specified by the user in the graph file.

The new program is suitable to integrate a design tool for the concurrent

processing systems under study. The automatic control of the simulation

routine makes the program ideal to find, through iterations, some optimum

performance parameters for a given graph.

The program provides on-line context-sensitive help. At every stage

where user intervention is expected, the key FI can be typed and a window

appears providing specific explanation of what the user may do at this part of

the program. The help window information can be as simple as the statement of

the purpose of the menu option or examples to illustrate the possible choices.

This program is expected to be changed in the future and to undergo a

series of enhancements. This is the reason it was written in C language, a

flexible and simple, yet powerful and easy-to-maintain language. The program

can be easily expanded or modified to meet the future demands of the ongoing

research.

IV.l.10 Outpu_ of the Graph Simulation/Analyzer

The Graph Simulation/Analyzer program generates only four kinds of files.

These are Average Time Between Input and Output (ATBIO), Average Time Between

Inputs (ATBI), Average Time Between Outputs (ATBO) and the FIPSO files. The

"average" files collect data that is calculated once the system has reached

the steady state. The computation of the steady state values is done by the

use of a running average, in the following manner:

I- An average is computed for the first six outputs (TBIO,TBI or TBO) and

stored in an average array.
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2- The first of those outputs is then discarded and the seventh output is

taken to form the next six outputs.

3- Another average is computed for the new six outputs and is stored in

the next location of the average array.

4- ThPs procedure is applied until there are no more outputs left to work

with.

5- The next step is to find which of the computed averages is within a

+/- 1% of its predecessor.

6- An overall average is calculated beginning with this predecessor up to

the last average and this is the ATBIO, ATBI or ATBO.

The FIPSO files are obtained the usual way, that is, from the recording

of every event, every event code is translated to text and the FIPSO file is

created. This file contents can be examined in the Analyzer as explained in

the last sections.

There are some instances when, although the steady state has been

reached, the program will print "N/SS" (Non-Steady State) instead of the

value sought. This usually occurs because the running average has too few

outputs to work with and the reaching of steady state is hidden in one of the

averages, i.e., the +/- 1% is too restrictive to detect it. Another error

message that can be given is :"N/EO," meaning "Not Enough Outputs." The

reason for this message is that there are less than nine outputs to work with

and it makes it difficult to calculate the average.

The method of running averages is adequate to find when the graph reaches

steady state. However, it requires many graph outputs which may create a

great time burden in terms of simulation time. These computation factors
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depend on the number of nodes of the graph,

resources available.

execution time and number of

V. 0 EXPERIMENTAL RESULTS

V.I Introduction

This Subsection presents the use of the Analyzer and the Graph Simu-

lation/Analyzer programs to evaluate the performance of two different graphs.

In Subsection IV.A.I, a graph with parallel paths is investigated. TBOLB and

TBIOLB are calculated and a simulation of the system is performed. Analysis

of the output data is used to obtain the minimum number of resources necessary

to obtain maximum performance regardless of priority assignment. Subsection

IV.4.2 is dedicated to investigate a graph with iterative loops. The same

data are obtained as in Subsection IV.4.1. Subsection IV.4.3 presents two

performance factors based upon TBOLB and TBIOLB.

V.2 Graphs With Parallel Paths

Graphs with parallel paths are important due to the possibility of high

concurrency in the execution of tasks. Fig. 26 presents an example of a graph

with three parallel paths. This example is used to illustrate the calculation

of TBOLB and TBIOLB.

The first step to calculate TBOLB and TBIOLB is to choose a Node Marked

Graph. The Single-Node model is selected because the resulting CMG is dead-

lock free. The second step is to obtain the CMG for the given graph. This is

shown in Fig. 27. The third step is to obtain the circuit that takes the

longest time to execute in order to obtain and get TBOLB. Fig. 28 shows the

circuit with the longest time per token. TBOLB is equal to 1065 time units.

As the fourth step, the path from the input to the output of the graph with
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the longest time has to be located. This is shownin Fig. 29. This time is

TBIOLBand is equal to 2240 time units. The fifth step is to calculate the

data injection rate which is controlled by the input source node. The time

that has to be associated with this node is equal to the inverse of the input

injection rate. To obtain the effective input rate to the graph, it is neces-

sary to consider the input read time of the input node. The source node will

fire when a token is placed at its control edge. This is done when the input

read time of the input node is over. Therefore, the source node write time is

equal to

Write time - TBOLB Input read time (Input Node).

The effective input rate to the graph is

IR - I/(TBOLB . tlNl )

where IR is the input rate, and tlNl is the input read time of node I.

TBOLB is 1065 andINl is 140, the source node write time is 925.

Since

v.2.1

The simulation is performed with the calculated data for all possible

number of resources. The simulation is executed for one resource, two

resources and so on, up to seven resources. The data is input to the Graph

Simulatlon/Analyzer by means of a Graph Description and Simulation Control

file. The simulation is stopped when the graph has processed fifteen data

packets. The GDSC file used to simulate the example is presented in Fig. 30.
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Average TBO, Average TBIO and the FIPSO files are gathered for every

simulation cycle. Resource Utilization (RU) and maximum number of resources

concurrently used are obtained from these files.

The simulation was also run for another priority assignment. The former

priority assignment tries to output as many data packets as possible; the

latter tries to load the graph to its maximum before an output is written.

The first priority assignment has its highest priorities toward the output of

the graph, i.e., the closer to the output the higher the priority. In this

way, the highest priority in the graph is to process and output data. The

system tries to output data as soon as possible. The second priority assign-

ment tries to input as much data as it can before data is output. The closer

a node is to the input of the graph the higher is its priority.

V.2.2 Analysis of Output Data

The Graph Simulatlon/Analyzer and Analyzer data are tabulated in Tables i

and 2. The computing power is about the same for every case since it is the

total computing power required for processing fifteen data packets. The

resource utilization decreases with the increase of number of resources. The

resource utilization is almost the same for one and two resources. For three

and more resources the resource utilization decreases more drastically for a

change of one resource. For every resource added to the system the resource

utilization is reduced by about ten percent.

TBOLB is closely achieved using more than four resources. The small

difference is due to the overhead time introduced by the Graph Manager, or the

Simulation, in the scanning and firing of the nodes of the graph. TBIOLB is

obtained using more than two resources. Again, the difference with respect to

the calculated value is due to the scanning of the graph.
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This value of TBOLBwas obtained for two different priority assignments.

The value of TBOLBis not calculated based on priority assignment but on the

transition times in the circuits of the graph. If it is obtained for a given

number of resources, it should be maintained regardless of the priority

assignment for at least the samenumberof resources.

The maximumnumberof resources used concurrently is five. After five

resources there is no effect on adding resources except to lower the resource

utilization. This graph can be executed at its optimum performance with five

resources.

V.2.3 Minimum Number of Resource_ _or Maximum Performance

Two important values are observed in Table I. These are the minimum

number of resources necessary to obtain TBOLB and the minimum number of

resources necessary to obtain TBIOLB. TBOLB is attained for at least five

resources and TBIOLB is attained for at least three resources. The minimum

number of resources for maximum performance is five since with this number of

resources TBOLB and TBIOLB is obtained. This minimum number of resources

coincides with the maximum concurrency in the graph. This value has been

obtained, by theoretical means, by the ODU research team and has been called

Rmax.

It is important to test if this minimum number of resources is indepen-

dent of priority assignment. The simulation of this graph was run for five

resources and for every possible priority assignment. It turned out that the

maximum performance was obtained for every priority assignment. This test

method is not recommended as a common practice since it requires too many

hours of simulation execution. It was done here as an exercise. It was done
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to test that this minimumnumber of resources is independent of priority

assignment for this example.

The minimumnumber of resources at which the TBIOLBis preserved is not

priority independent. A priority can be found at which, for this numberof

resources, TBIO is higher than TBIOLB. Table 3 shows the results for the same

graph with a different priority assignment than the last two. The minimum

number of resources at which TBIOLBis preserved is four instead of three as

in the last two examples of priority assignments.

It should be noted that the first two simulations performed in the graph

did not require more than thirty minutes, making the use of the Graph Simu-

lation/Analyzer and the Analyzer a viable method to evaluate the performance

of a given algorithm graph.

V.2.4 Graphs with Iterat%ve Loo_s

Graphs with iterative loops belong to another class of graphs that is

important to the ongoing research. These kinds of algorithm graphs are found

primarily in applications such as digital signal processing or control sys-

tems, where data from predecessor cycles are needed for computation of a

present data packet. Figure 31 presents an example of a graph with iterative

loops.

The Single-Node model is also used in this example to model the nodes in

the graph. Figure 32 shows the resulting CMG, using the Single-Node model, of

the graph..

The circuit with the longest time per token in the CMG is located in

either of the iterative loops, nodes 2 and 5, or nodes 3 and 6. Since there

is only one token in the circuit, the value of TBOLB is 960 time units. The

effective write time of the input source is equal to TBOLB less the read time

51



of the input node. The value of the write time of the source node is 890 time

units.

Following the procedure described in Section 2.8, nodes 5 and 6 are

eliminated to calculate TBIOLB. The value of TBIOLB is equal to the sum of

the times _rom the input source to the output sink. This value is 1600 time

units.

V.2.5 Simulation

The simulation is performed with the calculated data for all possible

numbers of resources. The simulation is executed for one resource, two

resources and so on, up to six resources. The data is input to the Graph

Simulation/Analyzer by means of a Graph Description and Simulation Control

file. The simulation is stopped when the graph has processed fifteen data

packets. The GDSC file used for this example is presented in Fig. 33.

Average TBI, Average TBO, Average TBIO and the FIPSO files are gathered

for every simulation cycle. Resource Utilization (RU) and maximum number of

resources used concurrently are obtained from these files.

The simulation was run for two priority assignments. This difference in

priority assignments was explained in Subsection IV.4.1.1.

V.2.6 Analvsls of Output Data

The Graph Simulation/Analyzer and Analyzer data are tabulated in Tables 4

and 5. Rma x is equal to three for this graph with iterative loops. Both TBO

and TBIO degrade for numbers of resources less than Rma x. This is different

from the case of the example of Subsection IV.4.1 in which only TBO degrades

below Rma x (in the mentioned example TBOLB is also attained for one and two

resources below Rmax). For the first priority assignment TBIOLB is still
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obtained for two resources, but for the second it degrades. This behavior

indicates that, for this graph, TBIO is priority dependent below Rmax.

There is a difference of ten or eleven time units between ATBI and ATBO

which is not expected since ATBI and ATBOshould be equal for the conditions

of the simulation. There is also an increase in the average of TBIO with

respect to ATBIOfor two resources in the first priority assignment. A more

detailed observation of the execution in the Analyzer reveals that the differ-

ence between TBOand TBI is being added to TBIO at every data packet. Every

time a data packet is injected in the graph, it takes ten more time units to

arrive to the output than the precedent data packet. This is the reason of

ATBIOto be muchhigher than expected. The reason of the difference between

ATBI and ATBOcan be observed in the Analyzer. The critical circuit, nodes

two and five, takes more time than calculated due to the scanning of the nodes

in the graph. This increase is directly applied to TBO,but TBI continues

being the samethat was calculated theoretically.

The source write time was incremented to 900 and the simulation was run

again. The results are as expected: ATBI is 975, ATBOis 975, and ATBIO is

1620 for Rmax.

The increase in the source write time is an experimental adjustment to

obtain the best possible performance. This yields an expression for a lower

bound TBO adjusted to compensate for system overhead during the execution:

TBOLBA - TBOLB + E

where TBOLB A is the adjusted lower bound for TBO, and E is the adjustment

factor obtained from the simulation of the graph, or in the case of a hardware

system, the one obtained by executing the graph.
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It should be noted that this adjustment factor, E, was not necessary for

the example of Subsection IV.4.1. The two graphs of the examples are from two

different classes of graphs. The graph of Subsection IV.4.1 belongs to a

class that has its input circuit directly "coupled" to the critical circuit

(the circuit with the longest time per token in the CMG). Two circuits are

coupled when they have a transition in common. The graph of this section is

from a class that has its input circuit "uncoupled" from the critical cir-

cuit, i.e., they are connected through other circuits in the graph. The graph

of section 4.1 is not as sensitive to variations in the time of the critical

circuit as the graph of this section. Since this subject is not in the scope

of this thesis, there will be no further analysis of these classes.

Without the help of the Simulation and the Analyzer, this adjustment

could not be made in such a short period of time. These adjustments sometimes

can be predicted, but the Analyzer is a required tool to discover these real-

ization differences in performance.

V.3 Performance Factors

There is a need for an absolute time independent performance factor to

classify the graphs by their performance. The absolute time in a given graph

is not as critical as the relative amount of time each node has with respect

to each other. If each and every transition time in any of the graphs evalu-

ated in this chapter are multiplied by a constant, the resultant graph has the

same critical circuit as the former graph. The difference is in the absolute

value of the computations. If the appropriate injection rate is applied at

the input, the same resource utilization is obtained.
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The TBOperformance factor (PFTBO)is obtained by

TBOLB
PFTBO -

TBOm

where TBOm is the measuredTBOof the system.

The TBIO performance factor (PFTBIO) is obtained by

TBIOLB
PFTBIO-

TBIOm

where TBIOmis the measuredTBIO of the system.

It should be noted that the maximumpossible value of these factors is

1.0. The value of the performance factors for the graphs of Sections 4.1 and

4.2 are presented in the Tables 6 and 7, respectively.
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VI. 0 FURTHER RESEARCH

During the grant period,the ATAMM model was used as the basis for deter-

mining analytically bounds for task computational time and system throughput.

An operating strategy which achieves optimum time performance was developed.

In addition, a new diagnostic tool was developed with which to evaluate per-

formance and functional unit behavior. The diagnostic tool provided moni-

toring of detailed system operations and the displaying of global system

performance indicators and measures.

Continuation of the present effort includes the development of a new

multicomputer test bed. The operating system and communication processes are

to obey the ATAMM model and to exhibit a completely distributed graph manager

operating system. The operating system is to allow for continuously assigned

functional units. This system is to be composed of personal computers com-

municating over a local area network.

The ongoing research has established ATAMM as a viable basis for the

specification of data flow multicomputer systems. Further research should

proceed in several directions. An outline of these activities is presented

below.

i. Fault Tolerance. Due to the inherent nature of the ATAMM model to

allow continuous assignment of the functional units, the soft-fail

nature of an ATAMM defined multicomputer system is evident in terms

of hardware failure. That is, the algorithm may be expected to

continue executing, though with degraded performance, with elimi-

nation of functional resources. However, additional effort needs to

be directed towards recovery strategies associated with error in the

data. One applicable method is triple modular redundancy (TMR),
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which involves the triplication of the node processes and majority

voting. The TMR strategy needs to be investigated with respect to

both performance and the preservation of the ATAMM model.

An important part of the ATAMM research program is to enhance the

understanding of the relationship between performance measures such

as TBIO, TBO, and TT with respect to the algorithm graph character-

istics and the availability of functional resources. On the basis

of recent observations, research is to be directed toward the

improvement of the performance measures as a result of modifying the

algorithm graph by the addition of nonexecutable features such as

control edges and "dummy" nodes. Present investigations suggest

that these graph augmentations may alter and improve certain aspects

of performance without changing the underlying algorithm.

Overhead. Research should be continued toward the refinement of the

node marked graph (NMG) representation. This refinement should

better model the time associated with communication overhead and

other system overhead in relation to node process time. A goal of

this modeling would be to determine limits on algorithm decompo-

sition in view of graph complexity and increased communication

overhead.

Advanced Hardware. An appropriate step in the ATAMM development is

the infusion of the processing rules to advanced technology multi-

computer hardware for avionic or space-bourne applications. An

appropriate environment would include VHSIC technology such as the

MIL-STD-1750A processor as the processing element.

Theoretical Advancements. So far the ATAMM model has been used
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under somewhatrestricted conditions. Further research should

include such issues as multiple graphs, nonhomogeneousfunctional

units, reliability, fault recovery strategies, and system archi-

tecture which takes advantage of the ATAMM model.
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TABLE 2. Results from first experiment, second priority assignment.
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Table 6. Performance factors for graph of Section 4.1.
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Table 7. Performance factors for graph of Section 4.2.
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Figure 2. ATAMM node marked graph model.
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Figure 5. Modilied algorithm graph for Figure I.
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Figure 6. Operating strategy implementation.
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Figure 7. Algorithm graph for design example.



Figure 8. Computational marked graph for design example.
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T,72,N,1 ,F,1
T,!!E,N.l.I

L249.H,t ,P

T,250,N,1 .S

T,276,N,1 ,O

T,278.N,2,F.2

T,322,N2,i

T.323,N.I .F.3

T,3G?,N,1 ,I

T.L,55.N.2,P

T.456,N,2,S

T,482,N,2,O

T,485,H,3,F,4

T.500.N.1 .P

T,501 .N,1 ,S

T,52?.N,1 ,O

TEE1 ,N,3,1

T,EE3,N,2,F.5

T,707 N,2,1

T.?OS,N,1 ,F,1

T,752N,l,I

T.8,4,0,N,2,P

T,841 ,N,2,S

T.SET,N.2,O

T,885,N,1 ,P

T.886,N,t ,S

T,912,N,t,O

T.1190.N.3.P

T.1191,N,3,S

T.1295,N.3,O

_ord descr iDtion

<-- Node I is fired at time 72 and assigned to FUI

<-- Node 1 read the input places at time 116

<-- Node i finished the process at time 249

<-- Node I got clearance to output data at time 250

<-- Node 1 wrote the output data at time 276

<-- Node 2 is fired at time 278 and assigned to FU2

<-- Node 2 read the input places at time 322

<-- Node I is fired at time 323 and assigned to FU3

<-- Node I read the input places at time 367

<-- Node 2 finished the process at time 455

<-- Node 2 got clearance to output data at time 456

<-- Node 2 wrote the output data at time 482

<-- Node 3 is fired at time 485 and assigned to FU4

<-- Node 1 finished the process at time 500

<-- Node 1 got clearance to output data at time 501

<-- Node I wrote the output data at time 527

<-- Node 3 read the input places at time 661

<-- Node 2 is fired at time 663 and assigned to FU5

<-- Node 2 read the input places at time 707

<-- Node 1 is fired at time 708 and assigned to FUI

<-- Node 1 read the input places at time 752

<-- Node 2 finished the process at time 840

<-- Node 2 got clearance to output data at time 841

<-- Node 2 wrote the output data at time 867

<-- Node i finished the process at time 885

<-- Node 1 got clearance to output data at time 886

<-- Node I wrote the output places at time 912

<-- Node 3 finished the process at time 1190

<-- Node 3 got clearance to output data at time LI91

<-- Node 3 wrote the output places at time 1295

Figure 19. A sample FIPSO file.
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Figure 26. Graph with parallel paths.
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Figure 27. CHG usingSingle Node model.
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Figure 30. Graph Description and Simulation
used for the first experiment.
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Figure 30. (Continuation).
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Figure 32. CMGof the graph' in Figure 31 using
Single Node Model.
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# Glol;a time _srgnment

# These time _ssJgnments _e for all
# node.¢ {n _he gr,_h. They can be

# eve ,m,dden later on.

Node

C,u_ u_ 2

Node 2

Ou4_u-_ 3 6

Node 3
;nput$ ;_9
Cu_uns 4 8

Figure 33. Graph Description File for the second experiment.
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q _" 4,nw._.c

Node 5

iqrne I_Loc_J_me _signrnen!
P,eacl I_ # These _me usignrnents ovemde

Proce-_s42.0 # the _!oD._timeassignmen;$

'...r_e 8g #

Node 6

Ou_u_ 9

¢,.ource !

Ou_u_ !
lqme

".'me 890

$;_1, 2

"_me
Pe_d 70

# Source o,J_C.,_wr.e t_me ,s T_O(LBI - 1N1
# '.'r_e ,]me = 3£0 - 70

=rdm

# Th_sen_ _he Graph Oescno_on File

Figure 33. (Continuation).
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ABSTRACT

.\n overview is presented of a model for
,!L.-,td_ingdata aaldcontrol flow associatedwith the
cxv_uti.nof large_trained.decision freealgorithms in
a _l)Ocial distributed computer environment.
[,!, n*iti,'d bv tile acronym ATAMM, which represents
\!,v,ntlm_-"JT.o-Architecture Mapping Model, the

_udct provxdes a basis for relating an algorithm to its
cN{.( tttioii in a dataflow multicomputer environment.
the A ['A.MM model features a marked graph Petri

_,,,r do-.cription of the algorithm behavior with re_ard
to both data and control flow. The model provides an
_m,dvticai basis for calculating performance boundJ on
:!._;tputcharac:eristics which axe demonstrated in the

I_,m-r.

IX IIN)I)t;C'I'ION

i'ho development of new computrr architectures
t. d upon iL-'rihuted, muitiproce:_or or_,anizations

.2! !, i|lo:i'.,ted mainly by the requirement for
h:i:,'i_od .-oeeu ,ut(I :,roarer throughput capability in

c-u;:.i)tex _i:nal processing applications "i:_" With the
._d',ont ot" h_,'t_-density microelectronics t construction
,_t :_,_t'_fik'l _rchitectures consisting of identical, special
,,=,.._c,_e computln¢ elements is now a reality [4],[5]. A
::'.x;:ne_ ,;_ mod_ls for describing the behavior of

t.-, :i,lm_ ixt tltis settin¢ have boon developed [6]_8].
i!,,.,.,'v,'r. 'hi-.,' n'odels represent only Th(, data flow and
.'.,_ _ur ,_dcttuato!v di._pi,ty the cotnplex issuett of
_,):_,!HHi*;i.,'iL iOll all(i controi flow wltich ttttlst occur in any
','._,[/.;li,,u. I'I,U.¢.it JUtS J_n diffiettlt tO itlvesti_ate how

,t,, !1,', t',voiv in:tt('h the dor'Oll|_).'_ititm and ,,q'hedltlint of

_l...,rtr!.m_ "to the _tructure and control of parallel

. I_ :.it c( !ult'._. The hnport,tneo of hetter understanding

_L¢ :clatlon_hip bet:veen algorithms and arehitcetures is
,jmv t'UW tzecotllitlg recocnizod [01.

"Ii;i_ paoer pr_ents an overview of a graph
:hcmetic model for describing both data and control flow
,,_.mciated with the concnrrent processing of larRe grained
.;_..:',lrill;tll> ill it ,_l)o('i;tI ,[i.,tribttted COlllptlt¢'r Otlvll'olt--

:::,_:_, I hi_ IIlo(i¢'l it:. iclotff, ifit'd hv the ;LcrOl|ylt] .'\T.XM._I

'.vhit'h r_'prr'-ents .._12orlthnl It) >,rchitecture .'Happing

'I'!,o ptnpo._o nf _te :\TAMM umdol is important
",,i :hie(, r(,n_olis. I.'ir_t. the mode[ [)ro',i(h's a har(Jwaro
. ,I,.l_Vt,!(nt (;ontoxt in which 1o iI|',l':<ti',';ltO the relative
_:,._it:< uf dilfcrcnt ,d_orithm def'ulttl_)Stl iOtl at|d

::;.:¢.omcntnt:on stratc¢ics. Second. tlm mt)tleldefin._ the
',' ',low and rontroi flow which mu.,,t. I)r inanifested by

,Atv d:tt,lt'low computer architecture intplementtn_ the
,l_cmH_osed al.zorithm. Third, the model provide= an
:m,,i','r iC_',lbasis for performance evaluation.

The problem domain of the ATAMM model
consists of laxge--gralned, decision--free algorithms with
computationally complex primitive operations which axe
assumed to be implemented in a dedicated distributed
dataflow environment. The algorithms are such as rr_y

processing and pP" " • .PO "
muiticomputet environment might consist otr two to
twenty processing elements composed of VHSIC
technology.

A'rA MM MODEL DEVELOPMENT

The compdsition of the algorithms of interest may
be such that two or more operations can be performed
concurrently. Thus, the potential e.xists for decrea_inz
the computational time required to executing the
algorithm by incre_ing the computational resources
which process the large grained primitive operations.

The hardware environment (Figure I) for

executing the decomposed algorithms is _ssumcd 'o
con:ist or" R identical processors or functional units
(FUNs) where R has a value in the range of _wo to
twenty. '['his range of resources is suggested for practical
reasons due to the large--grained aspect of the algorithm
decomposition and the need to maintain small communi-
cation times relative to process nines. Each FUN is a
processor having local memory for program storage and
t_mlmrary input and output data containers. Each FI'N
t;m ,,xccttte any algorithm primitive operation. The
I.'l 'Ns Htare a common global memory (GLM) which may
he either centralized or distributed. "The coordir.ation of
I:I:Ns in relation to data and control flow is directed by

Ihe ,_rnph ma,,t_er (GRM). The GRit also .may.b_
cent ralized or distributed. Transaction rules provioe tl.mt
t)til =,tit created by the completion of a primitive operation
i._ ;fi,ttcd into global memory only after the output data
c()iii;liners have been emptied. T_at is. output_ mu_t be
((m._umed a.5 inputs to successor primitive operations
before allowing new data to fill the output locations.
Assignment o{ a functional unit to a specific algorithm
i)rilnttive operation is made by the GRM only when all
ir|put._ required by the operation are available in RIoi)a]
memtJrv _tnd a functional ttnit is available.

_['he algorithm to be e:'ecuted has its data flow
represented in a directed graph termed the ah:orithm

directed graph (ADGL The ADG provides a descrtp'.:on
{)I _he operand data flow and operation 5oqtlc,nce required
Iw the algorithm decomposition. V(,rtices of tl:e ADG
are in a one--to-one correspondence with each occurrence
of a primitive operation. The ADG contains an ed_,e It.j)
directed from vertex i to vertex j if the output of

primitive operation i is an input operand for primitive
operation j. When constructing an algorithm graph.
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icesor nodes (primitiveoperations)are displayed as
es. and edges (input--outputsignals)are displayed as
.'ted line segments connecting appropriate vertices.
'ces and sinks for input mad output signals are
esented as squares. Sources from constants are not
dlv included in the algorithm graph: however,
_giesaxe used for thispurpose when necessary.

To illustrate,consider the computations for the

.=equation

x(k) = Axik-l) + Bu(k)

output equation

y(k)= Cx(k)

re x is a p--vector, u is an m-vector, y is an r-vector,
A and B are constant matrices The primitive

'ations are defined as matrix multiplication and
or addition. The algorithm directed graph for this
rithm decomposition isshown in Fisure 2. Note that

iedge islabeledwith the corresponding operands and
nodes are labeled to indicate the associated

putationaloperation.
Petri-netshave been establishedas an approp---
model for describing systems derided by some

Lence of events. \Vithout argument, the ah_orithm
ctcd _raph satisfiesthis general aspect. Further.
e computers need to communicate and be controlled
the occurrence of certain events, the Petri-net
m_e_ a .<uitaDletheoreticalvehicle for tl,e.\T.\.\IM

lel. Certain physical characteristicsof the c!assof
)len:sunder considerationlead to a simplii3edPearl-
representation.(For a formal descriptionof Petri-
features,rilereader isre'erredto referencesit0-12].)

Con.qdcriag the data flow in an al-,orithmdirected
_h.the e×ec:ttionof a pr'.mitiveoperation isprccon-
meal on the availability of input signals (or

•ands). This process may be directly modeh'd by a
i-ne: "transition" which is "enabh_l" For "firing:'
n input "places" to the transitionare marked with
.ens". Because the signal or data availability is a
.ry condition, it is appropriate that the wokens are
ted _o the set {0.I} in order to associate places
,(tiTio,s) to transactio_ (events)in a biuary way'. A
t-_:ct having such restricted input anti output
lions is called an ordinary Petri-net. The

rpretation of plACeS in the system model developed
is _l_e availability of a signal. That is, the absence

token indicates tile absence of a data signal, and tile
once of a token indicates the availability of a data

a[. Petri_tets having such tx,stricted markings are
,(I :ale or one-l)ounded Petri_tcts. Finally. the

mption is made that the algorithnxs under cons;dera-
contain no conflict or decision making such as

then-.else" or "do-while" statements, thus limitint,

Pptri-nrt pt,,'m to ha_itt_ onr, inptlt transition a,d
otttpttt Iransitiott. Thi_ ct,'_._ of restricted l'rtri-nets
died marked grapb.s. Ti,erefore. the Petri-nets used
iris report are ordinary. _afc markoi _.raphs.

Limiting the model for consideration of decision-
al-.orithtus is m_tde ix,cause the resulting marked

)h mo(lels are better understuod than general
ri-nets and hold the potential [or the development of
ormance boutld5 for coqcurrent processing st rategios.

An aleorith,n marked _raph (.\MG) is a marke(I
)h which reprcseqts a specific ;dgorithnt dr('omIw_si-
t alld is identical in topology to tit(. (utrosptmdine;
_rithm directed _raph. The :\Mr; represents the first

component in the development of the ATAMM model.
The constructionrulesand symbols are the same as the
ADG except that the edges are marked with tokens to

rcpresentthe availabilityof data. That is,edge (i,j)is
marked with a token ifan output from primitiveoperator

i is availablea= in input to primitive operator j. The
presence of a token on an edge isindicatedby a soliddot
placed on the edge. The vertices correspond to
transitionswhich may fire_ter being enabled by the
availabilityof all input data tokens. The decomposed
state equation represented in Figure 2 is also used to
illustratethe AMG. It should be noted that the initial

conditiottsfor the recursionire representedby tokens on
the loopedges.

The AMG isa usefultoolforrepresentingdecom-
posed aigorithrnsand for displayingdata flow within an
algorithm. However, the AMG does not identifyproce-
dures that a computing structuremust manifest in order
to perform the computing task.

Algorithm requirements and the computing
environment may now be integratedintoa comprehen-
sive Petri-net model to complete the ATAMM model.
The model consistsof I Pearl-pet marked graph called
the computation =I marked graph (CMG). The CMG
displays the d&ut flow =mdcontrol flow required to
implement a decomposed algorithm in a mul tiprocessor
data flow computer architecture. Before defining this
model, it ishelpfulto definean intermediategraph called
the node marked graph (NMG), [13].

A NMG is a Pearl--netrepresentation of the
computing behavior of a FUN for each AMG operation.
l'hrce primary activities,reading of input data from
global memory, processingof innut data to compute an
output, and .,¢ritingofoutput data to global memory, are
representedas transitions(vertices)in the NMG. "Data
and controlflow paths are represented as places (edgesL
and the presence of signalsis notated by tokens marking
appropriateedges. The conditions for firingthe process
and write transitionsof the NMG are as defined for a

general Petri-net. while the read transition has one
additional condition for firing. In addition to Itavintt a
token present on each incoming signal edge, a functioTaal
unit must be available for assignment to the primitive
operation before the read node can _re. Once assigned.
the functional unit is used to implement the read.
process, and write operations before being returned to a
queue of Available FUNs.

The NMG of interest in this paper requires control

signals indicating that empty data containers are
available to receive new output u input edges to the read
transition. Therefore. initiation of the node operation
r('quires not only the Availability of input data and a
(tm('tioi_al unit. but also the availability of empty output
data containers in global memory. Tfiis model is shown
in Figure 4.

A computational marked eraph (CMG) is
((}nstr,('tedfrom a l),_.rticttiar,_MG and the NM(;

accordingto the followingrules.
I. Source and sinknodes in the AMG are repre-

sented l)ysource and sinknodes in the CMG.
.. to'} Nodes correspondint primitiveoperations in

the :\MG are representedby N.MG_ in the CMG.
3. Edges in the A.MG are represented by cd_-e

pairs, one forward directed for data flow and one
backward directedforcontrolflow.in the CMG.

]he play of the CMG procr,edsaccordin_ to fly,
Foil.win'.' granh rules.

]. A node is enabled when all incoming edges are
n:a, ked with a token. An enabled node fires by encum-
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•bering one token from each incoming edge, delaying for:

some specifiedtra_sRion time, and then deposKing one
token on each outgoing edge.

A source node and a sink node fire when

enabled'_vithoutregard forthe availabilityof a FUN.
3. A node operation is initiatedwhen the read

node of an NMG isenabled and when a FUN isavailable

forassignment to the NMG and thus firesthe read node.
A FUN remains assigned to an NMG untilcompletion of

the firingof the write node of the NMG. Supervision of
thislogicalassignment of the FUN is managed by the

GRM. For illustration,the CMG corresponding to the

l,,onthm raph of Figure 2 is shown in Figure 4. The
a_ " g • " lays the data and
CMG is usefulbecause it clearlydlsp __ ._--,,t,,...
'utrolflow which must occur in anv.naruw.-_ ....v..'- _

co . ocess an(! t_._'.ause it provtue_
mentauon of the model pr , . .....
hardware independent context m wmcn to evamate

processperformance.
The ATAMM model consists of the algorithm

marked graph, the node marked graph, tnd the

computational marked graph, _nd the data flow
architecture. A pictorial description of the ATAMM

model is shown in Figure 5.

ATAMM MODEL GRAPll CIIARACTERISTICS

The theoreticalanalysis of the CMG from tlm

stand pintof marked graph theo_ isb_,,ondthe scope o[
,t,ls_r and may be found in [14]. However, several

p;ope"r_i'_ are noted below forclarRy.
Let the CMG he a marked graph eonsistin_ of m

places aud n transitions. The m-vector M k is the

marking vector resulting from the firing of some sequ_ce
of k transitions. It may be shown that the number of
tokens contained in any directed circuit of the CMG is

invaria_t under transition firings.
The CMG is live for all appropriate initial

marking vectors. That is. for a marking M if, fo¢ all
markings reachable from M, it is possible to fire any
transition of the CMG by progremng through some

transition firinz sequence.
The CMG is said to be consistent. That is, there

exists a marking M and a transition firing sequence from
31 back to 31 such that every transition occurs at least

nee. In addition, each transition of G occurs an equal
°nmber of times in t firing _tlUertc_ from a marlting M

back to M.
The CMG issaid to he safefor marking M if,for

all ma_kinz_sreachable from M. no place contorts more

t[laH one token.

/?ERFOR MALICE MEASURRS

In this section, performance measures indicating

comput n_ speed and throughput capacity are defined.
Bounds for these quanti,.ies are calculat_ analytically
from the AMG and CMG. This information is essential
for efficiently matching algorithm decompositions with
architecture'implementations. The work presented in
this section is exteusion of recent investigations of the

performance of Petri-nets [151,{161 and _arked graphs

[tTi Assume that R FUNs are available for the

al_orithm execution. A computational task is initiated
wt_eu ,'m input data token from the source node is
encumbered. Task output occurs when a corresponding
output data token is deposited at the output sink node.
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I
task iscompleted when allcomputing associatt_,with

A. ...... '-'^d However, task output and tUx
the taSK IS ComFiest • . ,__ t_.._a ;.
mnlotinn do not always coinciae aS may ._._u.u_y.,?

co...r-.... . _, ..... _,,, alforithrns in wnscn intttau
iterattve stf,n=' p,u_.._.-_ o .......... ,¢ter an
conditions_or the next iterauon mn.y u,._,, -,outputh=
indicatedin the AM_ o, ei_ni_a_k;n_ To f=litate
graph to some st.e_y--s_¢ -----:t" it is"assumed that

asurement of tl_rougnpu_ r._p_., y,
me ........ --_ ,,eriodically with new input dt_ ,s__.s.
tasKS are In,_.,_., v
New dat_ setsare availablecontinuouslyas input tosens

the tn ut source node. Included in this problem
from " P ........ _--.,-the nresent t&$k
class are iterative algortmnm .,,-__,___,.- V,_,,t_,i,mS

requires as inputs data trom pre_aous _= _,_,,,-" _ •
Concurrency, at any instant,fallsinto one of two

tc pries On one hand, differentfuncti,onaluni_
ca • • ' taneotm _,er,a
. s ma be rformmg s_mul. Y . .(FU_) y .. _e, .... :-- tO a ,_,ttcular task within
rimitive operations t_tun&,-8 r-- _ .._ ._,,4 ,n __,
pt ,_...... h This type of concurrency ,= L=,_,_" _ _'Z
HL _.LV_ 6_J" • ' ett on 1.11_L
vertical concurrency and hl_ .__dtr_to_t ,.rnh,_ of

computing speed. It ts umtte_ u_ ..........
t,ve overations th&t _ be _.rformed

primi ' -- • ' m deeps ti_, and' a yen al onth post
simultaneously m I; t
by the number of F_Ns tvmlable. The second
ncurrency relatesto FUNs which may be operating o_

_I,o--nt ihnut tasks within the gr._ph. ,rhis_tyl_.o_
" ........ effect on tnrougnpu_ caw_.,-_.
concurrency has t direct, h to acco_te

is limited by the capaoty of the grap .... • _ _..;.,.,._
It . ne humus m _-_,.,,.----
_ditional task mp.uts: and by tl ..._. In the following
units available to tmp|ement _ne ,_,_.
itis shown that the process of algorithm d.ecornpositio.n

imposes bounds on the amount ol verueal concurnmcy

ficient computing rcso
[aftSt_ese bounds can be achieved. If the number of
computing hethe
reached simultaneously anu u_--., ....
amount of vertical concurrency and horizontal

concurrencY are possible, for concurrent
Three performance _ur_
"n axe defined. The performance measure T.BIQ

prOCesSl g ..... _.:.k .t=,.,_ hetWetql a task input
corn utinR time wn,_.- _-v','--"iS the P ............. ut The performance

and the corres.ponomg t_.____-_ =',.;,h elam_ between
• U/lID _.l_s_ wu_ r--- .

measure rr is tne comp 8 '-ti-n of tll computatmn
a task input and tim comPS3 v .
associated-with that t_k. Tlae penorma_ace secure
TBO is the computing time which elal:_m between
succcssive task outputs when the sraph is operating

periodically in steady-etate. The first two p&rarn_ers,
d TT, =re indicators of computing speed and

TBIO an ............... encv The third
the de ee Ol ver_ir,_w,_-, z- " v

thus reflect ___ gr. ......... of throughput capatnt.
narameter, Ttsu, is • .m_,_--_ ___.___,._i,._ncurrenc_'.
and thus reflects the degree ot nonzun_= _,,
_d_cn compared to TT.

Lower bounds of these measures may now be

outlined, and may be found in detail in [141. Consider an
AMG representing a decomposed algorithm. The lower
bound for TBIO is the shortest time required for a data

m the data input source to propatate through
token fro_ to the data output s.nk. Similarly, the lower
the gr.apn ....... _.... t time ,equired to complete
bounO lOS rt IS _ne _uut,_
all computing activity initiated by the injection of a data
token from the data input source. These shortest tim_

erformance times when only a single task
are the act.ual p _ ----:-- -nv time interval (no

"Tdman>"compu :  
horizontal IL'IJllUIJtt_,"_ It _:l--t-,t= im_-xi um vert,cal
resources as are requtreo are av_,ita-,_ ,.. ---m
concurrency). Under these operating conditions, lower
bounds .for TBIO and TT are calculated by identifvinf,. - . o .
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certain longest paths in a graph obtained from the
algorithm marked graph. This new graph, called the
modified algorithm marked graph, MAMG, is defined
and then used to determine lower bounds for TBIO and
TT

The construction of the modified AMG proceeds

by the following rule,. Let Pi be a place of of the AMG,

directed from transition t r to transition ts, which

contains a token of the initial marking. Then the

.XIAGM may be obtained from the original AMG by
1. Deleting place Pi from the A.MG;

'2. Adding place Pil' directed from tile data input

source to transition Is, is added to G:

3. Adding a new output sink si different from all

other output sinks, and a new place Pi2' directed from

transition t rtO si; and

4. Repeating l-3 for each place of the AMG
contai,fing a token of the initial marking.

Let Pi be the ith directed pa_ in the MAMG

from the data input source to the output sink. The lower
I_mud for TBIO is defined as

"I'BIOLB = Max { 'r(Pi) },

where the maximum is taken over all paths Pi in tile

MAG.M and T(Pi) denote the sum of transition times for

transitions contained in Pi"

Let Pi be the ith directed path in the MAMG

from the data input source 'o an)" output sink. The lower
bound for TT is defined a.s

TTLB = Ma.,: { T(Pi) }

'vl_ere T(Pi) denote the sum of transition times of

transitions contained in Pi' and the rna.ximum is taken

over all paths Pi in the MAGM.

To illustrate, TBIOLB and TTLB are computed

for the A.XIG shown in Figure 2 for which the following
'raasi:ion times are ,Lssumed: T(I}=4. T(2)=I. T(3)=5,
and T(i't=6. The MAMG is shown in Figure 6. It may
be easily shown that TBIOLB=I0 and TTLB=II.

A lower bound for the performance inca.cure rBO
is now determined from the CMG representing a
,_ecomposed algorithnL It is assumed that operating
co,mlitions Are set to maximize horizomal concurrency.
That is. data tokens are continuoush. Available at tl'le
d_Lta input source, and as mauv coml_utiag resources
needed can he called to perform primitive operations.
With these conditions, the _raph plays l_riodically in
steady--state, and TBOLB is the shortest time possible

l_,tweeu _uccessive outputs. [.et C. be the ith directed
I

circuit in the CMG. The notation T(Oi) denotes the sum

of transition times of transitions contained in C i, attd

•XI(Ci) denotes the number of tokens contained in C i.
Then.

TBOLB = .Ma._ { T(Ci) / M(Ci) },
where the maximum is taken over all directed circuits in
the CMG. ,,

The CMG in Fig,Ire _t has many directed circuits.
H'owever. the directed circtiit which contAinS all NMG

r

nodes of transitions 2 and 4 contains only one token and
maximizes the ratio T(Ci) / M(Ci). Therefore, the ,

shortesttime possiblebetween succe_ive outputs in this
graph is TBOLB=7.

STRATEGY FOR OPTIMUM TIME PERFOrC_ANCFr

Of inferrer is the development of an operating
strategy for the ATAMM model which achieves optimum
time performance with a minimum number of computing
r_ources. Unfortunately, this problem is equivalent to a
tass of scheduling problems which is known to be
P-complete. Thus, there exists no alaorithm for

obtaining an optimum solution which is _etter than

ucmerating.all possible solutions and then choosing the
one. tlowever, a suboptimal operating stratetv

which achieves optimum time performance, but possib_-
reqmres more than the minimum number of computing
resources, has been developed and is illustrated in this
section.

When presented with continuously available input
data sets, the natural behavior of a data flow architecture

results in operation where new data sets are accepted as
rapidly a._ the available resources permit. That is, the
architecture naturally operates at high levels of
horizontal concurrency" with the possible loss of capability
for achieving high levels of vertical concurrency. This
results in performance characterized by high throughput
rate,, TBO=TBOLB ' but relatively poor task computing

speed so that TBIO>>TBIOL B and TT>>TTLB" In

many signal processing and control applications, it is
_tnl'mrtant to achieve both high throughput rate and high
task computing speeds. The suboptimal operating
strategy presented in this section results in performance
having t he following characteristic,.

1. WMm R>RMax, operation achieves TBIOLB '

TTLB, and TBOLB. RMa x i$ computed in implement-

ing the str_.el[7: and repres_ts the minimum number of

resourceswnlcn insuresma.vamum horizontalconcurrency
and maximum verticalconcurrency under thisstrategy.

2. When RMax>R>RMin ' operation achieves

TBIOLB and TTLB , but TBO>TBOLB. The strategy

preservestaskcomputing speed or verticalconcurrency at

the expense of throughput rateor horizontalconcurrency.
It.xlin isalsocomputed in implementing the strata., and

representsthe minimum number of resourcesneeded to
maintain verticalconcurrency with limited horizontal
concurre:tcv.

3. "['herateat which new data ispresentedto the

C.MG must be limited. This isaccomplished by adding a
controltransitionconuected in a directedcircuitwith the

data input source. The control transitionimposes a
mimmum delay of D time unitsbetween inputs. Delay D
ischoscn according to the followingrule:

TBOLB R > RMa x

D = TBOMi n RMa.x > R > RMi n

TCE RMi n> R> I.

TCE denotes the total computing effort required to

complete the task, Min .Ma.x Min Areand TBO , R , and R

computed as part of the operating strategy design
procedure.

ORIGINAL _" _e
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o rating strategy design process consists of
The _hese steps are presented and explained in

five steps.
the retnainder of this section. An operating strategy is
de_eloped for the e_xample algorithm graph shown in
Figure 7 to illustrate each step as it s pres.ented.
S_L_.I. Choose a convenient transition firing rule. For

exam le algorithm graph, the highest to Iowcst

;_oritv oP_dering of the transitions is cho_n a.*

($.4.3._.2_.6.t).. ...,_,., Thp OMG corresponding to
._tP._2. oetermme L_ULB .......

tl,e example algorithm _raph. is shown in Figure $. Tile
directed circuit identifiea =n this figure contains 6
transition time units and 2 tokens, and maximizes the

ratio T(Ci)/M(C i) for all directed circuits. Therefore,

TBOLB =3-
_. Determine the resource utilization envelope of a
_ingie task required for maximum vertical concurrency at
steady--state with TBO = TBOLB tinder the assumption

of unlimited resources. The play of the example
al¢orithm _aph under these concliti0nsis shown, in

Figure 9. and the resultingresource utmzauon envelope
is shown in Figure 10.
St__lC.p_. Stabilize the resource utilization envelope l)y
adding control places as necessary. If the lime Iw,t,,.vot*n
inputs to the CMG is increased nix)re "rBOLB. the

urce utilizaxion envelope may chance from that
r,es_ol.... :- ere" 3 Since knowle(i_eof the .envelopeis
Ot)Serveu **, ._ . e "" , ._L-..._,' .,,t, oireO resources,
r uired _o calculate the nut!_uT., ,,, ,.-'_ ,,,f. _,,, ,he
,iT(]itional places are appenae(t to flip :',.st,,J n,_ .....

\tG to treeze the shape of the envelo,",e. For example,
L'. " [_ of Fioure 7 with
tile play 0 f the exm-nple.algonthm.graD =. A '"
au iniect_on time of 4 ts shown in t-_-ure |! At tn!s
s!ower miection rate. transition 6 fires one time unit
earl!er. [o prevent time movement of transition 6. a
control piace directed from transition '2 to transition 6 is
added. "['hisplace prevents the firing of transition 6 until

transition 2 has completed firing. Thus the resource
utilization envelope computed for an input period of

TBOLB is the envelope for all input periods

TBO>TBOLB.

¢,,on. _,. Compute R.Ma, c, RMin, and TBOMin(R) using

tile resource _,tiliz&tion envelope. RMa x is determined

hv over!avint resource utili-,ttion requirements, each

delayed hi" TBOLB with respect to the pl'l_iOUS nile. aS

s|tox_n i,t Figure 12 for the example. R.Ma. x is equal to

the largest resource requirement durint anv time interval
within the steady state nlw'rating period." ll),li n i> the

tnhthnutn tutnlber of r_onrees necessary to insure
tati_xintUln vertical concurrency with no horizoulal

• :l_ema.xintunt
re¢ource re(tllirOlllCn t inUlC,%Le(l lit L| c ulilizatiOll

envelope for a sin,_le task. For the rxample problem.
RMax--a and ll.Min=3 . The value of I'BOMi n t'or earh

resource number R between I1.Max and R.Xlin hlclusive, is

dt,tortuhied by itlcreasllw-, the del;k v Iw,t'wCq'li o_t,rlappin_

tusource utiiization eltvelopes tltltll the uu_imu11*

resource requiren_ent is R. TBOMi n is the smallest input

dcla.v to produce this resource requirement. For the
example, the calculations of TBOMi n {i)r R=3 are

illustrated in Figure 13. The results of these calculations

are TBOMin(3) =4.
The performance degradation _ a function of R of

the example algorithm _raph is summarized in Figure 14
which shows the thruput rate or performance mar_n as a
function of R. Note that for the e.xampie, no

i,nl)rovement in thruput isavailable for R>R.Ma. x-

The ATAMM model has been demonstrated to be

a useful graph theoretic model for describing data and
control {_ow asr_.iated with the execution of laxge

rainod, decision free tlgorithrm in a speciM distributed
mputer environment. The ATAMM model has been

shown to provide am =_t)_tie-alb_is for .cal._la_n§
performance bound= on thruput cnaractertsuc_ au_
suboptimum performance behavior. The ATAMM model
leads directly to the communcation and data flow

specifications for & data flow _chitectuure a_l thus
becomes the basis of design for them structure=.
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Fillure 6. Modified AMG - Example 1

Figure7. AlgorithmM_rked Graph - Example2

Figure 8. Computational M_ked Graph - Example 2
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Norfolk, Virginia

ABSTRACT

The development of a new graph theoretic
model for describing the relation between a
decomposed algorithm and its execution in a
multiprocessor environment is presented. Called
ATAMM. tile model consists of a set of Petri net

marked graphs which incorporates the general
specifications of a data flow architecture. The model

is useful for representing decision-free algorithms
having large-grained, computationally complex
primitive operations. Performance measures of com-

putin_o speed and throughput capacity ate defined.
The _TAMM model is used to develop analytically
lower bounds for these quantities.

The development of a new graph theoretic model for
describing data and control flow associated with the

execution of large--grained algorithms in a special
distributed computing environment is presented. The
model is identified by the acronym ATAMM which

represents .Algorithm To Architecture Mapping Model
2" _e purpose" of such a model is to proT'ide a'basis for
.establishing rules for relating an algorithm to its executiot_
m a multiprocessor environment. Specifications derived
from the model lead directly to the description of a data
flow architecture. The availability of the ATAMM model

is important for at, least, three re_ons. First, it provides a
context in which to investigate algorithm decomposition
strategies without the need to specify a specific computer
architecture. Second, the model identifies the data flow

and control dialog required of any data flow architecture
which implements the algorithm. And third, the model

Drovides a basis for calculating analytically performance
oounds for computing speed and throughput'capacity,.

The problem domain of the ATAMM model consists
of decision free algorithms with computationally complex
primitive operations which axe assumed to be implemented
in a dedicated data flow environment. The algorithms are
such a_ may be found in (but not limited to) large scale
signal processing and control applications. lhe
anticipated multiprocessor environment is assumed to

consist of two to twenty processing elements for concurrem
execution of the various algorithm primitives.

The development of new computer architectures

based upon distributed, nmltiprocessor orga,lizations [t I.
[21 is motivated mainly bv tile reqt,irement for increased
speed aud creater throughput capahilily in complex si_md
processing.. " application_. [3].. lhx'eut advames ii, th,.
production of high,tensity micrt_,h'ctronics it' ha., re,d,,

possible the construction of parallel architectures

consisting of identical, special purpose computing elements
ajS]. A number of models for describing the behavior of

gorithms in this setting have been developed [6]-[8].
However, these models represent only the data flow and do
not adequately display the complex issues of

communication and control flow which must occur in any
reali_atiou of the model. For this reason, it has been
diffic;zlt to investigate how to effectively match the

decomposition and scheduling of all_o.rithms to the
strutture and control of parallel architectures. The

importance of better understanding the relationship
between algorithms and architectures is only now
becoming recognized [9].

In Section II of the paper, the modeling process to
describe algorithms in data flow architectures, ATAMM, is
presented. The model consists of three Petri net marked

graphs called the algorithm marked graph (AMG), the
uode marked graph (NMG), and the computational
marked graph (CMG). In Section Ill, time performance

._'_.___._1 fn°rodc_n_sUrruent_dP_oc?hs_ngbys e f_fined' 1 The

.... " " calcu ating
analytically lower bounds for these performance measures.

An example is presented to illustrate these concepts, and
the results of experimental runs on actual multiprocessor
hardware are reported.

II. ATAMM MODEl, DEVELOPMENT

In this section the ATAMM model to describe

concurrent processing of decomposed algorithms is
presented. The model consists of a set of Petn net marked
_,raphs which incorporate general specifications of
communication and processing associated with each
computational event in a data flow architecture. First, a
d+,tailod description of the problem context is stated. This
is followed by the definition of the ATAMM model

consistin¢ of the algorithm marked graph, the node
marked graph, and the computational marked graph.

Some familiarity with Petri uets [10] and marked g,raphs
[111 is a._,_umed [n this presentation.

The problems of interest are decision-free,
computationally complex problems as are often found in

signal proto.',sing and control applications. A problem
(h'...criptitm aornmlty results in tile definition of a function

¢ive_ hv the triple (X.Y,F). The set X represents the set
of adn_issible inputs, the set Y represents tile set of
adHm,.-ihh, outputs, and F:X->Y is the rule of corres-

l_<md,'tkt,' _ hich ulI,tn|higuously a.ssio.,ns exa(.tl 3 one
,'lt'lltt'lll (tOlll "'1' It) each element _f X. Ass<wiated _ith a

t_utq_ii!.+TItmal prohletll is lille or lllore algorithlll>, ..\ii

,il_Olil IIlll I- ,Ill "\plicit lllathelllal i_'al ,',latelllellt. oxpres>cd

kt> 1_ ] _ ']r''t' r''_ S_'I _ _f prinfitive operalion., which explail_s

CH254 I- l, 88. 0000/0538501.00 © 1988 IEEE B-2
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how to in_plement the rule of correspoudencc I: hi

zeneral, a given problem can be decomposed by sev.eral
_til,l,erent primitive operator sets. Also. for a _lVt'n

primitive operator set. there are often different orderin_.s
of primitive operations which can I,,e specified to carry out
the problem Of _pecial interest are algorithm decomposi-
tions in which tv,'o or more primitive operations can be

performed concurrentlv. For such decompositions, the
potential exists for decreasing the computational time
required to'solve the problem by increasing the computa-
tional resources which implement the primitive operations.

The hardware environment for executing the
._ed algorithms is a,qsumed to consist of R identical

decompo_ ,- ...... ;,- _UNs/ where R has a value
processors or lunctlon&l u.,_.o _- . J

i

maintain small communication times relative to process
times. Each FUN is a processor having local memory for
PorO[ram stora_;e and temporary input and output data

n'talners. _:ach FUN can execute any algorithm
ve o ration The FUNs share a common global

primiti ._Pe..., •...... be either centralized or
memory GLM} wmcn may , .
distribute_. The coordination of FUNs m relaton to data
and control flow is directed by the graph manager (GRM).
The GRM also may be centralized or distributed. Output
created by the completion of a primitive operation is

placed into global memory only_ after the output data
containers have been emptied. That is, outputs must be

consumed as inputs to successor primitive operations
allowin new data to fillthe output locations.

before _ ........ ;- ,o a snpeitic algorithm
Assignment at a. tun.cuona, u,j:_ _,, GR._l--on|v when all

rimitive operatson is maul: u.y ..... _:,__.,2;. ,,l,',bal
iPr,,uts reouired by the operation are aV,-lmUL= ,-- _,
m_,mory and a flmctional unit is available.

An algorithm marked graph is a marked graph which

represents a specific algorithm decomposition. Vertices of
the gorithm graph are in a one--to--one correspondence

al ch occurrence of a primitive operation. tne
with ea . . - J-- - il directed from vertex

ithm ra t_ contaans an _uS_ _,,,,,
algor g . P.............. r nrimitive o ration i is .an
i to vertex.J !l.tne uU_.l.,,u- ,,., _ ...... pe ...... :---
input for pnm_ttve operation J. I_tage l,t,j} ts marxeu w,_, *

f an outout from primitive operator i is available astoken i - - ...... ; When constructing an
an intmt to primtttve opera_u_ j: .ii.L: .... ,;,,-s_ are

al-gori'thm graph, vert)c___pr_m2_t,'_ut_u__'s_n'al;)are
dis layed as orcl_, ann eus,= _,,,v,.- -_-- -Y ....riatc
disPla_,ed as directed line segments connecung ,_t'V":'.V ,
vertices. The presence of a token on an edge is mdlCate(s

lid dot olaced on the edge. Source transitionsand' are
by a _ransitions for input and output s_gnals notsink
represented as squares. Source* for constants are
usually included in the algorithm marked graph: however,

triangles are used for this purpose when necessary.

illustrate the construction of an algorithm
._To .... _ consider the problem of compuung the

a cl'iscrete linear system given a sequence ut
output o . ' .... t.. ,,,,t_m _ ascribed by the
inputs to t._e system, t._ _,,,: o., ........ d

stateequation

x(k) = Ax(k-1) + Bu(k)

and output equation

y(k) = Cx(k),

where x is a p-vector, u is an m-vector, and y is an

r-vector, lhe prh]litive operations are ,h,l]nt'd as matrix

multiplication and vector addition, and the nat_tral

algorithn_ decompositiolI resulting l'rOlll the ,t ate equatiotx
description is selected. File algorithm marked graph l,or
this decolnposed algorithm i,_ showu in Fizure l. The

initial marking indicates that initial condition data are

available.

Axlk--tl _ KII, tl

A*I I

Figure I. Algorithm morkod graph tar discrete $¥$l@m equahon.

The algorithm marked graph is a useful tool for
ntm -decomposed algorithms and for displaying

represe " g . . v r the al orithm
data flow withm an algorithm. Howe e , g .

raph does not display procedures that a computmg
gtructure must manifest in order to perform the computing

and resource managemem ar_ .v_ ,,vv--_.. .
These "mportant aspects of concurrent processmg are
• i in the ATAMM model through, the d.efiniti0n_of
Includeditonal zraohs The node marked grapn)s uelmeo
two add i _ - : - " " ive o rattan, the
to model the executmn of a prlm_t pe

ionalmarked graph, obtained from the AMG and
computat • inte rates both
the NMG by a set of construction rules, g
the algorithm requirements and the computing
environment requirements into a comprehensive graph
model. These additional marked graphs are defined in the

following.

A node marked graph is a Petri net representation of

the performance of a primitive operation by a functional
unit. Three primary activities, reading of input data from

mar , orocessintt of input data to compute
idobai me Y-. - . . _- ..... a_,_ to olobal memory,

an(J writing otoutpu_, u,t,= o , "
output data. ^a ...... sactions (vertices) in the N.MG.
are representeu ,_ .....
Data and control flow paths are represented as places

(edges), and the presence of signals is notated by tokens
marking appropriate edges. The conditions for firing the

process and write transitions of the NMG are as defined for
a ieneral Petri net. while the read transition h_ one
additional condition for firing. In addition to having a
token present on each incoming signal edge. a l,,lnctional

• available for assignment t6 the primitive
tlnlt must be .... a .... nro Once a,ssi_ned, the

operation betore the reau nuur ,-= ........ and
used to iml)lement the read. process,

l,unctionalunit is before being returned ton qtJe_esi,__write operations
available FUNs. The initial marking tar an ._._,......
o1" a .qngle token in the "process ready" place. I'he NMG

model is shown in Figure 2.
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IF Input Buffer Fuji

I E Inpul 8tAffe¢ Empty
DR Data Repel

PC Process Complete

P FI Procdltl Ready

OS Ou_ Buffet Empty
OF Oulput Buffer Fuji

ATAMM node marked graph model,

A computational marked graph(CMG) is constructed
from the AMG and the NMG by the following rules.

I. Source and sink nodes in the algorithm marked
r]_(_. are represented by source and sink nodes in the

2. Nodes corresponding to primitive operations in
the algorithm marked graph axe represented by NMGs inthe CMG.

3. _ in the algorithm marked graph are
represented by edge pairs, one forward directedfor data
flow lad one bac.i_ward directed for control flow, in the
CMG. The initial marking for the edge pair consists of a
single token in the forward-directed place if data are
available, or a single token in the backward-directed place
if data are not avaulable.

The play of the CMG proceeds according to the
following graph rules.

1) A node is enabled when all incoming edges are
marked with , token. An enabled node fires by
encumbering one.token from each incoming edge, delaying
for some specine_ transition time, and then depositing one
token on each outgoing edge.

2) A source node and a sink node fire when enabled
without regard for the availability of a FUN.

3) A primitive opt,cation is initiated when the read
node of an NMG is enabled and a FUN is available for
assignment to the NMG. A FUN remains assigned to an
NMG until completion of the firing of the write node of
the NMG.

In order to illustrate the construction of a
computational marked graph, the CMG corresponding to
the algorithm marked graph of Figure ! is shown in
Figure 3. The computational mar_ed graph is useful
because it clearly displays the data and control flow which
must occur in any hardware implementalon of the model
proces& and because it provides a hardware independent
context in which to evaluate process performance.

II*! ! ¢ 1.4 I C.¢ !

all!

I. _ml mlkmm merlin4 _ _ !e¢ ¢I*_*I. _

The complete ATAMM model consists of the
algorithm marked t,ranh, the node -*-'---' ......

• ,,,,-,_-u rapn, lad thecomputationaJ mar'f_,_-graph. A ict "
model IS ShOWn in Fi_Jre T. P,..°-r_PI.a.Y of thls

v-. 4. ,,, .,,_= ue.xLsection, time
.perfor.man_ characterlstlcs of the ATAMM ....a., ___
Investigated. ,,,,.,,.,,=_Lr_

Fltlure t. ATAMI¢ meCkN cmCe_e_l,.

IlL PERFORMANCE BOUND._

The importance of the ATAMM model is that it
establishes a context in which to investigate the
performance of decomposed algorithms in multiprocessor
data flow architectures. In this section, performance
measures indicating computing speed and throughput
capacity are defined. Bounds for these quantities are

calculated analytically from the algorithm marked sraph
and the computational marked graph. This informatlon is

540
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ential for efficiently matching algorithm decompositions
ess • - • ........ :^-° The work pre_nted in
ith architecturetmpLemeu_,-,.u-o.

_;hi$ section is an interesting application and extension of
recent investigations of the performance of Petri nets [|2 I,

I13]and marked graphs [14].

It is assumed that a decomposed algorithm is

implemented in • multiprocessor .arch!•ecrure containing R
computing resourcesor funcuonal umts. t_acn lunctlonaa
unit is capable of performing any of the primitive

operations whose sequence defines the decomposition. A
computational task is initiatedwhen an input data token
from the source node is encumbered. Task output occurs
when • correspondinl output data token is deposited •t
the output sink node. A task is completed when all

computing associated with the task is completed. It
should be noted that task output and task completion do

not always coincide. In many iterativesignal processing
or•thins,computing to generate initialconditionsfor the

nalegx(titeration often occurs after an output has been
calculated. Task completion is usually indicated in the

AMG or the CMG by the return of the graph to some
steady-st•re initial marking. To facilitate measurement of
throughput capacity, it is assumed that tasks are repeated

periodically with new input d•t• sets. New d•t• sets are
available continuously as input tokens from the input
source node. Included in this problem class are iter•tive

algorithms where, the p resen, t task requires as inputs data
from previous tasw cmcumuous.

Concurrency in this problem setting occurs in two

ways. First, different functional units .m_y .perform
simultaneously several primitive operations belonging to •
single task. This type of concurrency is referred to
vertical concurrency. Vertical concurrency has • mrect
effect on task computing speed. It is limited by the

number of primitive operations that can be performed
simultaneously in • given algorithm decomposition, and by
the number of functional units available to perform the

primitive operations. Second, different functional units
n_ty perform simultaneously primitive operations
belonginl to different tasks sequentially input to the
computingsystem..O,led
capacitY. It i$ llml1_l Vy tu_ _* ,.

accornx_odate additionaltask inputs,mac[by the number of

functional units •vNl&ble to implement the tasks. In the
following it is shown that the proceu of algorithm
decomposition imposes bounds on tim amount of vertical
coneurr_cv and horizontal concurrmcy pomible in a.,giv,ea

"'--- * " [_lo_rc(_ _'e •V•llitUle,
,problem. -'If su_aent computing . . •
operation &t these bound.s _ ..be _hleved. Ift_e _nnU_r
o[ corn uting raour_. _s Iffmt .e_, t.ne _ounos c&r__ ._..

a.wtount Of vertlC&i concl_es_cy --u .v..,.,,
ate possible.

Three performance measures for concurrent
processing are defined. The first two par&meters, TBIO
and TT, ate indicators of computing speed mad thus reflect

e d ree of vertical concurrency. The third parameter,
_oegls • measure of throughput capacity and thus

reflects the degree of horizontal concurrency.

Definition I: TBIO_ The performance measure TBIO is
the computing time which elapses between • tas_ input
mad the corresponding task output.
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Defi,_ The performance measure TT is the

_hich elapses be.tween a.ta.sk, input and
%repletionof computat,onas ,&t w thth•t

task.

The performance measure TBO is the
utin_ time which elapses between successive task

comp -_-- -_-..... h is ooerating periodically in
outputs when _.c _--v
steady---state.

The remainder of this section is devoted to developing

lower bounds for these performance measures.

Let G denote an algorithm marked graph

representing • decomposed algorithm. The lower bound
for TBIO is the shortest time required for • data token
from the data input source to propagate through the graph
to the data output sink. Similarly, the lower bound •or
TT isthe shortesttime required to complete allcomputing

activityinitiatedby the injectionof • data token from the
data input source. These shortest times are the actual

performance times when only • singletask is active in the
raph during any time interval (no horizontal

g • __a ...... comnuting resources as are
c°nc.urre'_cyl'_.,-_, ":"_ .... --= ,,o'ical concurrency).

e ,o,.L :o
and "IT ate c_"cu]at_ by identifying certain longest p
in • raph obtained from the algorithm marked graph.
This ngew graph, called the modified algorithm gr•ph G M,

is defined and then used to determine lower bounds for

TBIO mad TT.

Definition 4: Modified Al__orithm Granh. Let Pi be • place

of G, directed from transition t r to transition t s, which

contains a token of the initial marking. The modified

algorithm graph G M is obtained from the graph G by the

followingconstruction rules.

I. Place Pi is deleted from G.

2. A new place Pil' directed from the d•t• input

source to transition t s, is added to G.

3. A new output sink si differentfrom all other

output sinks, and t new place PiT directed from

transitiontr to si,ate added to G.

4. The above rulesare repeated for each place of G

containing • token of the initialmarking.

Lower bounds for TBIO and TT are presented in

Theorem I and Theorem 2 respectively.

Theorem l" Lower Bound for TBICL Let Pi be the ith

directed path in G M from the data input source to the

data output sink, and let T(P i) denote the sum of

transitiontimes fortransitionscontained in Pi" Then,

TBIOLB = Max { T(P i) },



where the maximum is taken over all paths Pi in graph

G M

Proof. Without loss of generality, let tf be the la._t

transition in all paths Pi directed from the data input

source to the data output sink. Transition tf is enabled

when each input place for tf contains a token. Since by

a_sumption a computing resource is available, tf fires a.q

soon as it becomes enabled. Let pq be the last input place

for tf to acquire a token, and let tg be the input transition

for place pq. Continuing this labeling procedure results in

a backward path construction process. This process is

repeated, first at tg, and then at each succeeding transition

until the data input source is reached, identifying a path

Pj. By the construction process for the path, it is clear

that T(Pj) = Max { T(Pi) }, where tile maximum is over

all paths Pi in G M. it is also clear that TBIOi, B can be

no shorter than T(Pj) so that TBIOLB _>T(Pj). Since a

computing resource is available when each transition in Pj

is enabled, the time between input and corresponding

output can be no longer than T(Pj) so that

TBIOLB<_T(Pj). Therefore, TBIOLB = T(Pj) = Max

{ T(Pi) }, where the maximum is over all paths Pi in O M-

This complet_ the proof.

Theorem 2: Lower Bound for TT. Let Pi be the ith

directed path in G M from the data input source to any

output sink, and let T(Pi) denote the sum of transition

times of transitions contained in Pi' Then,

TTLB = Max { T(Pi) }

where the maximum is taken over all paths Pi in graph

G M •

Proof. By the construction rules for graph G M, a task is

initiated when input data tokens are input from the (lata

input source, and is completed when all output sinks have
accepted tokens. Therefore, TT is the time which elapses
from injection of input tokens to the arrival of a token at

the l_t fired output sink. Let T(Pt) = Max{T(Pi)}, Pi in

G,[, be the longest path time of paths from the data inpu!

source s I to any output sink, say s t. Since a token must

reach sink s t before a task is completed, it follows that

TTLB _> T(Pt). Since a resource is available for each

transition to fire when enabled, and since Pt is the longest

path in G M, it also follows that I'TLB<_T(Pt). Therefore,

TTLB = T(P I ) = .Ma-x{T(Pi) }. where the miLxitllHnl is

over a/l paths Pi in G M. l'his completes thc proof.

To illustrate the application of Theorem I and

Theorem 2. TBIOLB ana TTLB are computed for the

algorithm graph shown in Figure I. For this example, the
folh)win_ transition times are assumed: T(I) = 4,
"I"(2) = 1, T(3) = 5, and T(4) = 6. The modified

algorithm graph corresponding to Figure 1 is shown in
["igure 5. The modified algorithm graph contains two

paths directed from the data input source s I to the data

output sink s O. Path PI consists of edge set {1, 2, 3, 4}

with T(PI) = 10, and path P2 consists of edge set {.5---1.3,

4} with T(P2) = 6. Therefore, since T(PI) > T(P2)" path

PI determines the lower bound for TBIO and TBIOLB =

I0. The modified alsorithm graph contains two additional

directed paths from the data input source s i to the output

sink s 5. Path P3 consists of edge set { 1, 2, 6, .5---2} with

T(P3) = 11, and path P4 consists of edge set {5-1, 6, 5-2}

with T(P4) = 7. Since T(P3)>T(PI)>T(P4)>T(P2) '

path P3 determines the lower bound for TT and

TTLB=ll.

$--1 _ |)

I:igure S. Modified 41gordhm graph Io¢ F_gure f.

Next a lower bound for the performance measure
TBO is presented. Let G be a computational marked
_aph representing a decomposed algorithm. It is assumed
that operating conditions for G are _t to maximize
horizontal concurrency. That is, data tokens are.

continuously available'at the data input source, and as
many computing resources as needed can be called to

perform primitive operations. With these conditions, the

graph plays periodically in stead.v---state, and TBOLB is

the .,honest time possible between succ_sive outputs.

The_rem 3: Lower Bound for TBO. Let G be a

COml)utational marked grapt_ and let C i be the ith directed

circuit in G. The notation T(Ci) denotes the sum of

transition times of transitions contained in C i, and M(Ci)

denotes the number of tokens contained in C i. Then,

TBOLB = Max { T(Ci) / M(Ci) },

where the maximum is taken over all directed circuits in
G

Pr_ff. Without loss of generality, let tf be the output

t1ali,.iTi<)n hl (; so thai itll Olltpnt iS produced each time tf

__a__6
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l cotnpletes firing. Then TP, OLB is the minimmu firin_

period of transition tf. It is sho_u in [t.5! (pp "_-4;i_', tha!

the nfinimum firing period of each transition of a marked

graph is given by Ma-x{T(Ci)/.M(Ci)t, _here the

ma.,dnmm is taken over all directed circuits C i iu G.

Therefore. the theorem follows.

The computational marked graph ._hown in Figure 3

is used to illustrate Theorem 3. This CMG contains many
directed circuits, tiowever, the directed circuit which
contains all NMG nodes of transitions "2 and .I contains

only one token and maximizes the ratio T(C i) / .',I(Ci)-

Therefore, the shortest time possible between successive

outputs in this graph is TBOLB = 7.

The optimum time performance for this example

algorithm is described by the following characteristics.
The algorithm accepts an input and issues an output every
7 time units. Each input requires a total of 11 time units

of processing, and an output is issued 10 time units after
the input is accepted. It can be shown by simulation that
3 functional units are required to achieve this performance.
The addition of more functional units will not improve the

computing speed or throughput rate for this algorithm
decomposition.

IV. CONCLUSION

A new model useful for understanding the

relationship between decomposed algorithms and data flow
architectures has been presented. Named ATAMM for

Algorithm To Architecture Mapping Model, the model
consists of Petri net marked graphs called the algorithm

marked graph, the node marked graph, and the
computational marked graph. Time performance measures
of time between input and output (TBIO), ta-_k time

(TT), and time between outputs (TBO) were defined.
Then lower bounds for the performance measures were
calculated analytically from the modified algorithm graph
and the computational marked graph. An example to
illustrate these concepts was presented.

Simulation tools and an actual hardware prototype
have been developed, to test and validate the ATAMM
model. The simulation software package [16] consists of a

PC--based computer model of the CMG.. Algorithms ,_e

entered to the packase by speciIying tae aJgontnm marKen
graph, and simulauon output consists of a graphical
display of the movement of tokens. An acc.ompanying
diagnostic software package [17] automatically computes
and-displays performance measures and other performance
data. A hardware prototype [18] has also t_en constructed
to validate the ATAMM operating rules and to provide a
benchmark for testing the simulation software. The
architecture is shown in Figure 6 and is one of several
candidates which could be used to perform concurrent

operations according to the ATAMM rules, A primary
motivation for this particular design was the availability of
hardware. The system consists of S-100 crates _avinz an
InteI 8088 CPU card, multiple serial I/O cha,mels, and

32K memory. An IBM/XT is used to host the system and
to down load algorithm graph descriptions to the system
A number of decomposed algorithms, including, tho_e
presented here, have }wen investigated using these tools.
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Continuing research is designed to generalize the
ATAMM model and is focused in three ma_n areas. The

present model assumes that all functional units are
identical and that each is able to perform all primitive
operations. An important extension is to model the
situation where there are two or more different groupings

of processors where each group is able to perform only a
subset of the required primitive operations. The present
model represents only decision-free algorithms. Another
important extension is to develop the capability to admit

algorithms containing d&_-..dependent branchin_ points.
Finally, methods for achieving optimum time permrmance
are being studied in the context of the ATAMM model.
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